Continuous Semi Markov Processes


Download Continuous Semi Markov Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Continuous Semi Markov Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Semi-Markov Processes and Reliability


Semi-Markov Processes and Reliability

Author: Nikolaos Limnios

language: en

Publisher: Springer Science & Business Media

Release Date: 2001-02-16


DOWNLOAD





At first there was the Markov property. The theory of stochastic processes, which can be considered as an exten sion of probability theory, allows the modeling of the evolution of systems through the time. It cannot be properly understood just as pure mathemat ics, separated from the body of experience and examples that have brought it to life. The theory of stochastic processes entered a period of intensive develop ment, which is not finished yet, when the idea of the Markov property was brought in. Not even a serious study of the renewal processes is possible without using the strong tool of Markov processes. The modern theory of Markov processes has its origins in the studies by A. A: Markov (1856-1922) of sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon known as Brownian mo tion. Later, many generalizations (in fact all kinds of weakenings of the Markov property) of Markov type stochastic processes were proposed. Some of them have led to new classes of stochastic processes and useful applications. Let us mention some of them: systems with complete connections [90, 91, 45, 86]; K-dependent Markov processes [44]; semi-Markov processes, and so forth. The semi-Markov processes generalize the renewal processes as well as the Markov jump processes and have numerous applications, especially in relia bility.

Continuous Semi-Markov Processes


Continuous Semi-Markov Processes

Author: Boris Harlamov

language: en

Publisher: John Wiley & Sons

Release Date: 2013-03-01


DOWNLOAD





This title considers the special of random processes known as semi-Markov processes. These possess the Markov property with respect to any intrinsic Markov time such as the first exit time from an open set or a finite iteration of these times. The class of semi-Markov processes includes strong Markov processes, Lévy and Smith stepped semi-Markov processes, and some other subclasses. Extensive coverage is devoted to non-Markovian semi-Markov processes with continuous trajectories and, in particular, to semi-Markov diffusion processes. Readers looking to enrich their knowledge on Markov processes will find this book a valuable resource.

Semi-Markov Models and Applications


Semi-Markov Models and Applications

Author: Jacques Janssen

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-12-01


DOWNLOAD





This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984 : to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "discovered" in portfolio theory enlarging so the fundamental model of Markowitz.