Content Based Image Retrieval With Bag Of Visual Words


Download Content Based Image Retrieval With Bag Of Visual Words PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Content Based Image Retrieval With Bag Of Visual Words book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Content Based Image Retrieval with Bag of Visual Words


Content Based Image Retrieval with Bag of Visual Words

Author: Anindita Mukherjee

language: en

Publisher: Mohammed Abdul Sattar

Release Date: 2024-01-23


DOWNLOAD





Content based image retrieval (CBIR) has become a popular area of research for both computer vision and multimedia communities. It aims at organizing digital picture archives by analyzing their visual contents. CBIR techniques make use of these visual contents to retrieve in response to any particular query. Note that this differs from traditional retrieval systems based on keywords to search images. Due to widespread variations in the images of standard image databases, achieving high precision and recall for retrieval remains a challenging task. In the recent past, many CBIR algorithms have applied Bag of Visual Words (BoVW) for modeling the visual contents of images. Though BoVW has emerged as a popular image content descriptor, it has some important limitations which can in turn adversely affect the retrieval performance. Image retrieval has many applications in diverse fields including healthcare, biometrics, digital libraries, historical research and many more (da Silva Torres and Falcao, 2006). In the retrieval system, two kinds of approaches are mainly followed, namely, Text-Based Image Retrieval (TBIR) and Content-Based Image Retrieval (CBIR). The former approach requires a lot of hu- man effort, and time and perception. Content based image retrieval is a technique that enables an user to extract similar images based on a query from a database containing large number of images.The basic issue in designing a CBIR system is to select the image features that best represent the image content in a database. As a part of a CBIR system, one has to apply appropriate visual content descriptors to represent these images. A query image should be represented similarly. Then, based on some measures of similarity, a set of images would be retrieved from the avail- able image database. The relevance feedback part, which incorporates inputs from a user, can be an optional block in a CBIR system. The fundamental problem in CBIR is how to transform the visual contents into distinctive features for dissimilar images, and into similar features for images that look alike. BoVW has emerged as a popular model for representing the visual content of an image in the recent past. It tries to bridge the gap between low level visual features and high-level semantic features to some extent.

Content-Based Image Retrieval


Content-Based Image Retrieval

Author: Vipin Tyagi

language: en

Publisher: Springer

Release Date: 2018-01-15


DOWNLOAD





The book describes several techniques used to bridge the semantic gap and reflects on recent advancements in content-based image retrieval (CBIR). It presents insights into and the theoretical foundation of various essential concepts related to image searches, together with examples of natural and texture image types. The book discusses key challenges and research topics in the context of image retrieval, and provides descriptions of various image databases used in research studies. The area of image retrieval, and especially content-based image retrieval (CBIR), is a very exciting one, both for research and for commercial applications. The book explains the low-level features that can be extracted from an image (such as color, texture, shape) and several techniques used to successfully bridge the semantic gap in image retrieval, making it a valuable resource for students and researchers interested in the area of CBIR alike.

Medical Content-Based Retrieval for Clinical Decision Support


Medical Content-Based Retrieval for Clinical Decision Support

Author: Henning Mueller

language: en

Publisher: Springer

Release Date: 2012-02-21


DOWNLOAD





This book constitutes the refereed proceedings of the Second MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support, MCBR-CBS 2011, held in Toronto, Canada, in September 2011. The 11 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 17 submissions. The papers are divided on several topics on medical image retrieval with textual approaches, visual word based approaches, applications and multidimensional retrieval.