Construct Merge Solve Adapt


Download Construct Merge Solve Adapt PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Construct Merge Solve Adapt book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Construct, Merge, Solve & Adapt


Construct, Merge, Solve & Adapt

Author: Christian Blum

language: en

Publisher: Springer Nature

Release Date: 2024-06-18


DOWNLOAD





This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver. Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem. The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.

Evolutionary Computation in Combinatorial Optimization


Evolutionary Computation in Combinatorial Optimization

Author: Bin Hu

language: en

Publisher: Springer

Release Date: 2017-04-03


DOWNLOAD





This book constitutes the refereed proceedings of the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2017, held in Amsterdam, The Netherlands, in April 2017, co-located with the Evo*2017 events EuroGP, EvoMUSART and EvoApplications. The 16 revised full papers presented were carefully reviewed and selected from 39 submissions. The papers cover both empirical and theoretical studies on a wide range of academic and real-world applications. The methods include evolutionary and memetic algorithms, large neighborhood search, estimation of distribution algorithms, beam search, ant colony optimization, hyper-heuristics and matheuristics. Applications include both traditional domains, such as knapsack problem, vehicle routing, scheduling problems and SAT; and newer domains such as the traveling thief problem, location planning for car-sharing systems and spacecraft trajectory optimization. Papers also study important concepts such as pseudo-backbones, phase transitions in local optima networks, and the analysis of operators. This wide range of topics makes the EvoCOP proceedings an important source for current research trends in combinatorial optimization.

Hybrid Metaheuristics


Hybrid Metaheuristics

Author: Maria J. Blesa Aguilera

language: en

Publisher: Springer

Release Date: 2019-01-07


DOWNLOAD





This book constitutes the refereed proceedings of the 11th International Workshop on Hybrid Metaheuristics, HM 2019, held in Concepción, Chile, in January 2019. The 11 revised full papers and 5 short papers presented were carefully reviewed and selected from 23 submissions. The papers present hybridization strategies and explore the integration of new techniques coming from other areas of expertise. They cover a variety of topics such as low-level hybridization, high-level hybridization, portfolio techniques, cooperative search, and theoretical aspects of hybridization.