Constrained Optimization Methods


Download Constrained Optimization Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Constrained Optimization Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Optimization Methods


Introduction to Optimization Methods

Author: P. Adby

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





During the last decade the techniques of non-linear optim ization have emerged as an important subject for study and research. The increasingly widespread application of optim ization has been stimulated by the availability of digital computers, and the necessity of using them in the investigation of large systems. This book is an introduction to non-linear methods of optimization and is suitable for undergraduate and post graduate courses in mathematics, the physical and social sciences, and engineering. The first half of the book covers the basic optimization techniques including linear search methods, steepest descent, least squares, and the Newton-Raphson method. These are described in detail, with worked numerical examples, since they form the basis from which advanced methods are derived. Since 1965 advanced methods of unconstrained and constrained optimization have been developed to utilise the computational power of the digital computer. The second half of the book describes fully important algorithms in current use such as variable metric methods for unconstrained problems and penalty function methods for constrained problems. Recent work, much of which has not yet been widely applied, is reviewed and compared with currently popular techniques under a few generic main headings. vi PREFACE Chapter I describes the optimization problem in mathemat ical form and defines the terminology used in the remainder of the book. Chapter 2 is concerned with single variable optimization. The main algorithms of both search and approximation methods are developed in detail since they are an essential part of many multi-variable methods.

Practical Augmented Lagrangian Methods for Constrained Optimization


Practical Augmented Lagrangian Methods for Constrained Optimization

Author: Ernesto G. Birgin

language: en

Publisher: SIAM

Release Date: 2014-04-30


DOWNLOAD





This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors: rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications; orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result; and fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.

Constrained Optimization and Lagrange Multiplier Methods


Constrained Optimization and Lagrange Multiplier Methods

Author: Dimitri P. Bertsekas

language: en

Publisher: Academic Press

Release Date: 2014-05-10


DOWNLOAD





Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.