Conformal Field Theory Automorphic Forms And Related Topics


Download Conformal Field Theory Automorphic Forms And Related Topics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Conformal Field Theory Automorphic Forms And Related Topics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Conformal Field Theory, Automorphic Forms and Related Topics


Conformal Field Theory, Automorphic Forms and Related Topics

Author: Winfried Kohnen

language: en

Publisher: Springer

Release Date: 2014-08-22


DOWNLOAD





This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the Mathematics Center Heidelberg (MATCH).

Partition Functions and Automorphic Forms


Partition Functions and Automorphic Forms

Author: Valery A. Gritsenko

language: en

Publisher: Springer Nature

Release Date: 2020-07-09


DOWNLOAD





This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,...,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

Vertex Operator Algebras, Number Theory and Related Topics


Vertex Operator Algebras, Number Theory and Related Topics

Author: Matthew Krauel

language: en

Publisher: American Mathematical Soc.

Release Date: 2020-07-13


DOWNLOAD





This volume contains the proceedings of the International Conference on Vertex Operator Algebras, Number Theory, and Related Topics, held from June 11–15, 2018, at California State University, Sacramento, California. The mathematics of vertex operator algebras, vector-valued modular forms and finite group theory continues to provide a rich and vibrant landscape in mathematics and physics. The resurgence of moonshine related to the Mathieu group and other groups, the increasing role of algebraic geometry and the development of irrational vertex operator algebras are just a few of the exciting and active areas at present. The proceedings center around active research on vertex operator algebras and vector-valued modular forms and offer original contributions to the areas of vertex algebras and number theory, surveys on some of the most important topics relevant to these fields, introductions to new fields related to these and open problems from some of the leaders in these areas.