Conditional Generative Models For Learning Stochastic Processes

Download Conditional Generative Models For Learning Stochastic Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Conditional Generative Models For Learning Stochastic Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Foundations of Probability Theory

"Foundations of Probability Theory" offers a thorough exploration of probability theory's principles, methods, and applications. Designed for students, researchers, and practitioners, this comprehensive guide covers both foundational concepts and advanced topics. We begin with basic probability concepts, including sample spaces, events, probability distributions, and random variables, progressing to advanced topics like conditional probability, Bayes' theorem, and stochastic processes. This approach lays a solid foundation for further exploration. Our book balances theory and application, emphasizing practical applications and real-world examples. We cover topics such as statistical inference, estimation, hypothesis testing, Bayesian inference, Markov chains, Monte Carlo methods, and more. Each topic includes clear explanations, illustrative examples, and exercises to reinforce learning. Whether you're a student building a solid understanding of probability theory, a researcher exploring advanced topics, or a practitioner applying probabilistic methods to solve real-world problems, this book is an invaluable resource. We equip readers with the knowledge and tools necessary to tackle complex problems, make informed decisions, and explore probability theory's rich landscape with confidence.
Quantitative Evaluation of Systems

This book constitutes the proceedings of the 20th International Conference on Quantitative Evaluation of Systems, QEST 2023, which took place in Antwerp, Belgium, in September 2023. The 23 papers included in this book were carefully reviewed and selected from 44 submissions. They deal with current topics in quantitative evaluation and verification of computer systems and networks, focusing on data-driven and machine-learning systems, case studies, and tool papers. The book also contains the extended abstract of the invited talk from David Parker.
Computer Vision – ECCV 2024

The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024. The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.