Concise Guide To Optimization Models And Methods


Download Concise Guide To Optimization Models And Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Concise Guide To Optimization Models And Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Concise Guide to Optimization Models and Methods


Concise Guide to Optimization Models and Methods

Author: Xian Wen Ng

language: en

Publisher: Springer Nature

Release Date: 2021-11-24


DOWNLOAD





This concise text contains the most commonly-encountered examination problems in the topic of Optimization Models and Methods, an important module in engineering and other disciplines where there exists an increasing need to operate optimally and sustainably under constraints, such as tighter resource availability, environmental consideration, and cost pressures. This book is comprehensive in coverage as it includes a diverse spectrum of problems from numerical open-ended questions that probe creative thinking to the relation of concepts to realistic settings. The book adopts many examples of design scenarios as context for curating sample problems. This will help students relate desktop problem-solving to tackling real-world problems. Succinct yet rigorous, with over a 100 pages of problems and corresponding worked solutions presented in detail, the book is ideal for students of engineering, applied science, and market analysis.

Concise Guide to Optimization Models and Methods


Concise Guide to Optimization Models and Methods

Author: Xian Wen Ng

language: en

Publisher:

Release Date: 2022


DOWNLOAD





This concise text contains the most commonly-encountered examination problems in the topic of Optimization Models and Methods, an important module in engineering and other disciplines where there exists an increasing need to operate optimally and sustainably under constraints, such as tighter resource availability, environmental consideration, and cost pressures. This book is comprehensive in coverage as it includes a diverse spectrum of problems from numerical open-ended questions that probe creative thinking to the relation of concepts to realistic settings. The book adopts many examples of design scenarios as context for curating sample problems. This will help students relate desktop problem-solving to tackling real-world problems. Succinct yet rigorous, with over a 100 pages of problems and corresponding worked solutions presented in detail, the book is ideal for students of engineering, applied science, and market analysis.

Concise Guide to Numerical Algorithmics


Concise Guide to Numerical Algorithmics

Author: John Lawrence Nazareth

language: en

Publisher: Springer Nature

Release Date: 2023-01-02


DOWNLOAD





Numerical Algorithmic Science and Engineering (NAS&E), or more compactly, Numerical Algorithmics, is the theoretical and empirical study and the practical implementation and application of algorithms for solving finite-dimensional problems of a numeric nature. The variables of such problems are either discrete-valued, or continuous over the reals, or, and as is often the case, a combination of the two, and they may or may not have an underlying network/graph structure. This re-emerging discipline of numerical algorithmics within computer science is the counterpart of the now well-established discipline of numerical analysis within mathematics, where the latter’s emphasis is on infinite-dimensional, continuous numerical problems and their finite-dimensional, continuous approximates. A discussion of the underlying rationale for numerical algorithmics, its foundational models of computation, its organizational details, and its role, in conjunction with numerical analysis, in support of the modern modus operandi of scientific computing, or computational science & engineering, is the primary focus of this short monograph. It comprises six chapters, each with its own bibliography. Chapters 2, 3 and 6 present the book’s primary content. Chapters 1, 4, and 5 are briefer, and they provide contextual material for the three primary chapters and smooth the transition between them. Mathematical formalism has been kept to a minimum, and, whenever possible, visual and verbal forms of presentation are employed and the discussion enlivened through the use of motivating quotations and illustrative examples. The reader is expected to have a working knowledge of the basics of computer science, an exposure to basic linear algebra and calculus (and perhaps some real analysis), and an understanding of elementary mathematical concepts such as convexity of sets and functions, networks and graphs, and so on. Although this book is not suitable for use as the principal textbook for a course on numerical algorithmics (NAS&E), it will be of value as a supplementary reference for a variety of courses. It can also serve as the primary text for a research seminar. And it can be recommended for self-study of the foundations and organization of NAS&E to graduate and advanced undergraduate students with sufficient mathematical maturity and a background in computing. When departments of computer science were first created within universities worldwide during the middle of the twentieth century, numerical analysis was an important part of the curriculum. Its role within the discipline of computer science has greatly diminished over time, if not vanished altogether, and specialists in that area are now to be found mainly within other fields, in particular, mathematics and the physical sciences. A central concern of this monograph is the regrettable, downward trajectory of numerical analysis within computer science and how it can be arrested and suitably reconstituted. Resorting to a biblical metaphor, numerical algorithmics (NAS&E) as envisioned herein is neither old wine in new bottles, nor new wine in old bottles, but rather this re-emerging discipline is a decantation of an age-old vintage that can hopefully find its proper place within the larger arena of computer science, and at what appears now to be an opportune time.