Computer Simulation Study Of Collective Phenomena In Dense Suspensions Of Red Blood Cells Under Shear

Download Computer Simulation Study Of Collective Phenomena In Dense Suspensions Of Red Blood Cells Under Shear PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Simulation Study Of Collective Phenomena In Dense Suspensions Of Red Blood Cells Under Shear book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

Author: Timm Krüger
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-10-02
The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition.
Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

Author: Heinrich Krüger
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-07-18
The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition.
Computational Blood Cell Mechanics

Simulating blood cells for biomedical applications is a challenging goal. Whether you want to investigate blood flow behavior on the cell scale, or use a blood cell model for fast computational prototyping in microfluidics, Computational Blood Cell Mechanics will help you get started, and show you the path forward. The text presents a step-by-step approach to cell model building that can be adopted when developing and validating models for biomedical applications, such as filtering and sorting cells, or examining flow and deformations of individual cells under various conditions. It starts with basic building-blocks that, together, model the red blood cell membrane according to its physical properties, before moving on to discuss several issues that may pose problems along the way, and finally leads to suggestions on how to set up computational experiments. More details available at www.compbloodcell.eu