Computer Neural Networks On Matlab

Download Computer Neural Networks On Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Neural Networks On Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Neural Networks Using Matlab 6.0

Author: S. N. Sivanandam
language: en
Publisher: Tata McGraw-Hill Education
Release Date: 2006
Computer Neural Networks on MATLAB

Author: Daniel Okoh
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2016-10-07
Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.
Neural Network Architectures. Examples Using MATLAB

Author: J. Smith
language: en
Publisher: Createspace Independent Publishing Platform
Release Date: 2017-02-26
MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: - Deep learning, including convolutional neural networks and autoencoders - Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Apps for data-fitting, pattern recognition, and clustering - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance - Simulink(R) blocks for building and evaluating neural networks and for control systems applications Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. You can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.