Computer Architecture Performance Evaluation Methods


Download Computer Architecture Performance Evaluation Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Architecture Performance Evaluation Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computer Architecture Performance Evaluation Methods


Computer Architecture Performance Evaluation Methods

Author: Lieven Eeckhout

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation. Table of Contents: Introduction / Performance Metrics / Workload Design / Analytical Performance Modeling / Simulation / Sampled Simulation / Statistical Simulation / Parallel Simulation and Hardware Acceleration / Concluding Remarks

Computer Systems Performance Evaluation and Prediction


Computer Systems Performance Evaluation and Prediction

Author: Paul Fortier

language: en

Publisher: Elsevier

Release Date: 2003-07-09


DOWNLOAD





Computer Systems Performance Evaluation and Prediction bridges the gap from academic to professional analysis of computer performance.This book makes analytic, simulation and instrumentation based modeling and performance evaluation of computer systems components understandable to a wide audience of computer systems designers, developers, administrators, managers and users. The book assumes familiarity with computer systems architecture, computer systems software, computer networks and mathematics including calculus and linear algebra.·Fills the void between engineering practice and the academic domain's treatment of computer systems performance evaluation and assessment·Provides a single source where the professional or student can learn how to perform computer systems engineering tradeoff analysis·Allows managers to realize cost effective yet optimal computer systems tuned to a specific application

Quantum Computing for Computer Architects, Second Edition


Quantum Computing for Computer Architects, Second Edition

Author: Tzvetan Metodi

language: en

Publisher: Springer Nature

Release Date: 2022-06-01


DOWNLOAD





Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation. In this lecture, we provide an engineering-oriented introduction to quantum computation with an overview of the theory behind key quantum algorithms. Next, we look at architectural case studies based upon experimental data and future projections for quantum computation implemented using trapped ions. While we focus here on architectures targeted for realization using trapped ions, the techniques for quantum computer architecture design, quantum fault-tolerance, and compilation described in this lecture are applicable to many other physical technologies that may be viable candidates for building a large-scale quantum computing system. We also discuss general issues involved with programming a quantum computer as well as a discussion of work on quantum architectures based on quantum teleportation. Finally, we consider some of the open issues remaining in the design of quantum computers. Table of Contents: Introduction / Basic Elements for Quantum Computation / Key Quantum Algorithms / Building Reliable and Scalable Quantum Architectures / Simulation of Quantum Computation / Architectural Elements / Case Study: The Quantum Logic Array Architecture / Programming the Quantum Architecture / Using the QLA for Quantum Simulation: The Transverse Ising Model / Teleportation-Based Quantum Architectures / Concluding Remarks