Computer Algebra Methods For Equivariant Dynamical Systems


Download Computer Algebra Methods For Equivariant Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Algebra Methods For Equivariant Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computer Algebra Methods for Equivariant Dynamical Systems


Computer Algebra Methods for Equivariant Dynamical Systems

Author: Karin Gatermann

language: en

Publisher: Springer

Release Date: 2007-05-06


DOWNLOAD





This book starts with an overview of the research of Gröbner bases which have many applications in various areas of mathematics since they are a general tool for the investigation of polynomial systems. The next chapter describes algorithms in invariant theory including many examples and time tables. These techniques are applied in the chapters on symmetric bifurcation theory and equivariant dynamics. This combination of different areas of mathematics will be interesting to researchers in computational algebra and/or dynamics.

Computer Algebra Handbook


Computer Algebra Handbook

Author: Johannes Grabmeier

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the sec ond, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world. -David Berlinski, The Advent of the Algorithm First there was the concept of integers, then there were symbols for integers: I, II, III, 1111, fttt (what might be called a sticks and stones representation); I, II, III, IV, V (Roman numerals); 1, 2, 3, 4, 5 (Arabic numerals), etc. Then there were other concepts with symbols for them and algorithms (sometimes) for ma nipulating the new symbols. Then came collections of mathematical knowledge (tables of mathematical computations, theorems of general results). Soon after algorithms came devices that provided assistancefor carryingout computations. Then mathematical knowledge was organized and structured into several related concepts (and symbols): logic, algebra, analysis, topology, algebraic geometry, number theory, combinatorics, etc. This organization and abstraction lead to new algorithms and new fields like universal algebra. But always our symbol systems reflected and influenced our thinking, our concepts, and our algorithms.

Normal Forms and Unfoldings for Local Dynamical Systems


Normal Forms and Unfoldings for Local Dynamical Systems

Author: James Murdock

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-04-10


DOWNLOAD





The subject of local dynamical systems is concerned with the following two questions: 1. Given an n×n matrix A, describe the behavior, in a neighborhood of the origin, of the solutions of all systems of di?erential equations having a rest point at the origin with linear part Ax, that is, all systems of the form x ? = Ax+··· , n where x? R and the dots denote terms of quadratic and higher order. 2. Describethebehavior(neartheorigin)ofallsystemsclosetoasystem of the type just described. To answer these questions, the following steps are employed: 1. A normal form is obtained for the general system with linear part Ax. The normal form is intended to be the simplest form into which any system of the intended type can be transformed by changing the coordinates in a prescribed manner. 2. An unfolding of the normal form is obtained. This is intended to be the simplest form into which all systems close to the original s- tem can be transformed. It will contain parameters, called unfolding parameters, that are not present in the normal form found in step 1. vi Preface 3. The normal form, or its unfolding, is truncated at some degree k, and the behavior of the truncated system is studied.