Computer Algebra And Geometric Algebra With Applications


Download Computer Algebra And Geometric Algebra With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computer Algebra And Geometric Algebra With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computer Algebra and Geometric Algebra with Applications


Computer Algebra and Geometric Algebra with Applications

Author: Hongbo Li

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-06-21


DOWNLOAD





This book constitutes the thoroughly refereed joint post-proceedings of the 6th International Workshop on Mathematics Mechanization, IWMM 2004, held in Shanghai, China in May 2004 and the International Workshop on Geometric Invariance and Applications in Engineering, GIAE 2004, held in Xian, China in May 2004. The 30 revised full papers presented were rigorously reviewed and selected from 65 presentations given at the two workshops. The papers are devoted to topics such as applications of computer algebra in celestial and engineering multibody systems, differential equations, computer vision, computer graphics, and the theory and applications of geometric algebra in geometric reasoning, robot vision, and computer graphics.

Computer Algebra and Geometric Algebra with Applications


Computer Algebra and Geometric Algebra with Applications

Author: Hongbo Li

language: en

Publisher: Springer

Release Date: 2005-06-20


DOWNLOAD





MathematicsMechanization consistsoftheory,softwareandapplicationofc- puterized mathematical activities such as computing, reasoning and discovering. ItsuniquefeaturecanbesuccinctlydescribedasAAA(Algebraization,Algori- mization, Application). The name “Mathematics Mechanization” has its origin in the work of Hao Wang (1960s), one of the pioneers in using computers to do research in mathematics, particularly in automated theorem proving. Since the 1970s, this research direction has been actively pursued and extensively dev- oped by Prof. Wen-tsun Wu and his followers. It di?ers from the closely related disciplines like Computer Mathematics, Symbolic Computation and Automated Reasoning in that its goal is to make algorithmic studies and applications of mathematics the major trend of mathematics development in the information age. The International Workshop on Mathematics Mechanization (IWMM) was initiated by Prof. Wu in 1992, and has ever since been held by the Key L- oratory of Mathematics Mechanization (KLMM) of the Chinese Academy of Sciences. There have been seven workshops of the series up to now. At each workshop, several experts are invited to deliver plenary lectures on cutting-edge methods and algorithms of the selected theme. The workshop is also a forum for people working on related subjects to meet, collaborate and exchange ideas.

Foundations of Geometric Algebra Computing


Foundations of Geometric Algebra Computing

Author: Dietmar Hildenbrand

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-31


DOWNLOAD





The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.