Computationally Intelligent Systems And Their Applications

Download Computationally Intelligent Systems And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computationally Intelligent Systems And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computationally Intelligent Systems and their Applications

Author: Jagdish Chand Bansal
language: en
Publisher: Springer Nature
Release Date: 2021-04-24
This book covers all core technologies like neural networks, fuzzy systems, and evolutionary computation and their applications in the systems. Computationally intelligent system is a new concept for advanced information processing. The objective of this system is to realize a new approach for analyzing and creating flexible information processing of sensing, learning, recognizing, and action taking. Computational intelligent is a part of artificial intelligence (AI) which includes the study of versatile components to empower or encourage savvy practices in intricate and evolving situations. The computationally intelligent system highly relies on numerical information supplied by manufacturers unlike AI.
Computationally Intelligent Systems and Their Applications

This book covers all core technologies like neural networks, fuzzy systems, and evolutionary computation and their applications in the systems. Computationally intelligent system is a new concept for advanced information processing. The objective of this system is to realize a new approach for analyzing and creating flexible information processing of sensing, learning, recognizing, and action taking. Computational intelligent is a part of artificial intelligence (AI) which includes the study of versatile components to empower or encourage savvy practices in intricate and evolving situations. The computationally intelligent system highly relies on numerical information supplied by manufacturers unlike AI. .
Computational Intelligence Systems and Applications

Traditional Artificial Intelligence (AI) systems adopted symbolic processing as their main paradigm. Symbolic AI systems have proved effective in handling problems characterized by exact and complete knowledge representation. Unfortunately, these systems have very little power in dealing with imprecise, uncertain and incomplete data and information which significantly contribute to the description of many real world problems, both physical systems and processes as well as mechanisms of decision making. Moreover, there are many situations where the expert domain knowledge (the basis for many symbolic AI systems) is not sufficient for the design of intelligent systems, due to incompleteness of the existing knowledge, problems caused by different biases of human experts, difficulties in forming rules, etc. In general, problem knowledge for solving a given problem can consist of an explicit knowledge (e.g., heuristic rules provided by a domain an implicit, hidden knowledge "buried" in past-experience expert) and numerical data. A study of huge amounts of these data (collected in databases) and the synthesizing of the knowledge "encoded" in them (also referred to as knowledge discovery in data or data mining), can significantly improve the performance of the intelligent systems designed.