Computational Wear Prediction Of Uhmwpe In Knee Replacements

Download Computational Wear Prediction Of Uhmwpe In Knee Replacements PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Wear Prediction Of Uhmwpe In Knee Replacements book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
UHMWPE Biomaterials for Joint Implants

This book presents a comprehensive, state-of-the-art review of the latest progresses in UHMWPE biomaterials, which has been critical for the performance and longevity of joint implants. Oriented by clinical challenges to UHMWPE-based joint implants, it introduces the processing, crosslinking, structural manipulation, oxidation mechanism, stabilization, drug delivery, and wear, as well as clinical performance, biomechanics, and simulated studies of joint implant based on UHMWPE with low wear, which are aimed to tackle or minimize the adverse effect related to wear and wear debris. These contributions provide fundamentals of chemistry and physics of UHMWPEs to help understand the clinical performances of UHMWPE based joint implants. Perspectives to next generation UHMWPE to meet the unmet challenges in clinical use are included.
Computational Wear Prediction of UHMWPE in Knee Replacements

A multibody dynamic contact model predicted the damage sustained by two tibial inserts tested under different conditions on an AMTI knee simulator machine. The model required a wear factor of 7.7 × 10−7 mm3/Nm to match the wear volume measured from the first insert after 0.86 million cycles of simulated gait. The model matched the medial and lateral damage depths measured from the second insert to within 0.3 mm after 5 million cycles of simulated gait and stair (10:1 ratio). Computational models may be valuable for screening new knee implant designs rapidly and performing sensitivity studies of component positioning issues.
Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System

Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System reviews how a wide range of materials are modelled and how this modelling is applied. Computational modelling is increasingly important in the design and manufacture of biomedical materials, as it makes it possible to predict certain implant-tissue reactions, degradation, and wear, and allows more accurate tailoring of materials' properties for the in vivo environment. Part I introduces generic modelling of biomechanics and biotribology with a chapter on the fundamentals of computational modelling of biomechanics in the musculoskeletal system, and a further chapter on finite element modelling in the musculoskeletal system. Chapters in Part II focus on computational modelling of musculoskeletal cells and tissues, including cell mechanics, soft tissues and ligaments, muscle biomechanics, articular cartilage, bone and bone remodelling, and fracture processes in bones. Part III highlights computational modelling of orthopedic biomaterials and interfaces, including fatigue of bone cement, fracture processes in orthopedic implants, and cementless cup fixation in total hip arthroplasty (THA). Finally, chapters in Part IV discuss applications of computational modelling for joint replacements and tissue scaffolds, specifically hip implants, knee implants, and spinal implants; and computer aided design and finite element modelling of bone tissue scaffolds. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and mechanical engineers, and those in academia. - Covers generic modelling of cells and tissues; modelling of biomaterials and interfaces; biomechanics and biotribology - Discusses applications of modelling for joint replacements and applications of computational modelling in tissue engineering