Computational Transport Phenomena Of Multiphase Systems And Fluidization


Download Computational Transport Phenomena Of Multiphase Systems And Fluidization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Transport Phenomena Of Multiphase Systems And Fluidization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Transport Phenomena of Multiphase Systems and Fluidization


Computational Transport Phenomena of Multiphase Systems and Fluidization

Author: Huilin Lu

language: en

Publisher: Springer Nature

Release Date: 2025-02-19


DOWNLOAD





This book focuses on the modeling of gas-solid, liquid-solid, non-Newtonian fluid-solid, and supercritical fluid-solid fluidized beds and multiphase flows. Simulation techniques are categorized into Euler–Euler with kinetic theory of granular flow (KTGF) and Euler–Lagrange with discrete element method (DEM) approaches. Both the governing equations and numerical implementations are presented. A new CFD-KTGF-DEM approach describes phase interactions, free from the empirical restitution coefficient used in KTGF, and accounts for turbulence effects on discrete particle motion, which DEM cannot achieve. Additionally, a low Stokes number KTGF model is introduced, incorporating the interstitial fluid's effect, unlike the classical KTGF, which assumes vacuum conditions. Special attention is given to momentum exchange between heterogeneous and homogeneous flows in fluidized beds and multiphase systems, and various multiscale drag models are presented. The book also discusses the application of these approaches in fluid-solid fluidized bed reactors and oil-gas drilling processes.

Transport Phenomena in Multiphase Systems


Transport Phenomena in Multiphase Systems

Author: Hamid Arastoopour

language: en

Publisher: Springer Nature

Release Date: 2021-08-21


DOWNLOAD





This volume fills the need for a textbook presenting basic governing and constitutive equations, followed by several engineering problems on multiphase flow and transport that are not provided in current advanced texts, monographs, or handbooks. The unique emphasis of this book is on the sound formulation of the basic equations describing multiphase transport and how they can be used to design processes in selected industrially important fields. The clear underlying mathematical and physical bases of the interdisciplinary description of multiphase flow and transport are the main themes, along with advances in the kinetic theory for particle flow systems. The book may be used as an upper-level undergraduate or graduate textbook, as a reference by professionals in the design of processes that deal with a variety of multiphase systems, and by practitioners and experts in multiphase science in the area of computational fluid dynamics (CFD) at U.S. national laboratories, international universities, research laboratories and institutions, and in the chemical, pharmaceutical, and petroleum industries. Distinct from other books on multiphase flow, this volume shows clearly how the basic multiphase equations can be used in the design and scale-up of multiphase processes. The authors represent a combination of nearly two centuries of experience and innovative application of multiphase transport representing hundreds of publications and several books. This book serves to encapsulate the essence of their wisdom and insight, and:

Topics in Multiphase Transport Phenomena


Topics in Multiphase Transport Phenomena

Author: Robert W. Lyczkowski

language: en

Publisher: AuthorHouse

Release Date: 2020-01-17


DOWNLOAD





Chapter 1 A Fluid-Porous Solid Reaction Model With Structural Changes, supplies details on modeling reactions with porous catalysts. The unique feature of this chapter is the pore closing, pore opening condition. This analysis is particularly useful for improving the design of storage batteries. Until the publication of “A Model for Discharge of Storage Batteries” by Dimitri Gidaspow and Bernard S. Baker, Journal of the Electrochemical Society,120, 1005-1010 (1973) the discharge of batteries was described by a purely empirical equation as a function of time. Chapter 2 Kinetics of the Reaction of CO2 With Solid K2CO3, complements U.S. patent No. 3,865,924 (February 11,1975) by Dimitri Gidaspow and Michael Onischak, on rates of carbon dioxide (CO2) capture. These rates of reaction were measured in a parallel plate channel at several laminar flow velocities. An integral equation flow analysis was used to obtain diffusion independent rates of reactions. Chapter 3 Silicon Deposition Reactor Using High Voltage Heating, describes an internally heated fluidized bed with no size limitations and with no bubble formation and its simulation. Chapter 4 Alternative Methods of Deriving Multiphase Field Equations, constitutes a literature review of approaches that have been used and/or proposed in the literature to derive multiphase flow equations which could form the basis of the theory and computation of dense suspensions of particulates such as coal-water slurries or blood flow.