Computational Probability


Download Computational Probability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Probability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Probability


Computational Probability

Author: Winfried K. Grassmann

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-14


DOWNLOAD





Great advances have been made in recent years in the field of computational probability. In particular, the state of the art - as it relates to queuing systems, stochastic Petri-nets and systems dealing with reliability - has benefited significantly from these advances. The objective of this book is to make these topics accessible to researchers, graduate students, and practitioners. Great care was taken to make the exposition as clear as possible. Every line in the book has been evaluated, and changes have been made whenever it was felt that the initial exposition was not clear enough for the intended readership. The work of major research scholars in this field comprises the individual chapters of Computational Probability. The first chapter describes, in nonmathematical terms, the challenges in computational probability. Chapter 2 describes the methodologies available for obtaining the transition matrices for Markov chains, with particular emphasis on stochastic Petri-nets. Chapter 3 discusses how to find transient probabilities and transient rewards for these Markov chains. The next two chapters indicate how to find steady-state probabilities for Markov chains with a finite number of states. Both direct and iterative methods are described in Chapter 4. Details of these methods are given in Chapter 5. Chapters 6 and 7 deal with infinite-state Markov chains, which occur frequently in queueing, because there are times one does not want to set a bound for all queues. Chapter 8 deals with transforms, in particular Laplace transforms. The work of Ward Whitt and his collaborators, who have recently developed a number of numerical methods for Laplace transform inversions, is emphasized in this chapter. Finally, if one wants to optimize a system, one way to do the optimization is through Markov decision making, described in Chapter 9. Markov modeling has found applications in many areas, three of which are described in detail:Chapter 10 analyzes discrete-time queues, Chapter 11 describes networks of queues, and Chapter 12 deals with reliability theory.

Computational Probability


Computational Probability

Author: John H. Drew

language: en

Publisher: Springer

Release Date: 2016-12-15


DOWNLOAD





This new edition includes the latest advances and developments in computational probability involving A Probability Programming Language (APPL). The book examines and presents, in a systematic manner, computational probability methods that encompass data structures and algorithms. The developed techniques address problems that require exact probability calculations, many of which have been considered intractable in the past. The book addresses the plight of the probabilist by providing algorithms to perform calculations associated with random variables. Computational Probability: Algorithms and Applications in the Mathematical Sciences, 2nd Edition begins with an introductory chapter that contains short examples involving the elementary use of APPL. Chapter 2 reviews the Maple data structures and functions necessary to implement APPL. This is followed by a discussion of the development of the data structures and algorithms (Chapters 3–6 for continuous random variables and Chapters 7–9 for discrete random variables) used in APPL. The book concludes with Chapters 10–15 introducing a sampling of various applications in the mathematical sciences. This book should appeal to researchers in the mathematical sciences with an interest in applied probability and instructors using the book for a special topics course in computational probability taught in a mathematics, statistics, operations research, management science, or industrial engineering department.

Computational Probability


Computational Probability

Author: P. M. Kahn

language: en

Publisher: Elsevier

Release Date: 2014-05-10


DOWNLOAD





Computational Probability is a collection of papers presented at the Actuarial Research Conference on Computational Probability and related topics, held at Brown University on August 28-30, 1975. This 19-chapter book explores the development of computational techniques in probability and statistics and their application to problems in insurance. It covers six general topics, including computational probability, computational statistics, computational risk theory, analysis of algorithms, numerical methods, and notation and computation. Applications covered both life and nonlife insurance. This book will prove useful to applied mathematicians, statisticians, and computer scientists.