Computational Models In Biomedical Engineering


Download Computational Models In Biomedical Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Models In Biomedical Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Models in Biomedical Engineering


Computational Models in Biomedical Engineering

Author: Milos Kojic

language: en

Publisher: Academic Press

Release Date: 2022-09-11


DOWNLOAD





Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software discusses novel computational methodologies developed by the authors that address a variety of topics in biomedicine, with concepts that rely on the so-called smeared physical field built into the finite element method. A new and straightforward methodology is represented by their Kojic Transport Model (KTM), where a composite smeared finite element (CSFE) as a FE formulation contains different fields (e.g., drug concentration, electrical potential) in a composite medium, such as tissue, which includes the capillary and lymphatic system, different cell groups and organelles. The continuum domains participate in the overall model according to their volumetric fractions. The governing laws and material parameters are assigned to each of the domains. Furthermore, the continuum fields are coupled at each FE node by connectivity elements which take into account biological barriers such as vessel walls and cells. - Provides a methodology based on the smeared concept within the finite element method which is simple, straightforward and easy to use - Enables the modeling of complex physical field problems and the mechanics of biological systems - Includes features that are illustrated in chapters devoted to applications surrounding tissue, heart and lung - Includes a methodology that can serve as a basis for further enhancements by including additional phenomena which can be described by relevant relationships, derived theoretically or experimentally observed in laboratories and clinics

Computational Modeling in Biomedical Engineering and Medical Physics


Computational Modeling in Biomedical Engineering and Medical Physics

Author: Alexandru Morega

language: en

Publisher: Academic Press

Release Date: 2020-09-15


DOWNLOAD





Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. - Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine - Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods - Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Computational Modeling in Bioengineering and Bioinformatics


Computational Modeling in Bioengineering and Bioinformatics

Author: Nenad Filipovic

language: en

Publisher: Academic Press

Release Date: 2019-10-09


DOWNLOAD





Computational Modeling in Bioengineering and Bioinformatics promotes complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems, and in the environment, public health, drug design, and so on. It provides a common platform by bridging these two very important and complementary disciplines into an interactive and attractive forum. Chapters cover biomechanics and bioimaging, biomedical decision support system, data mining, personalized diagnoses, bio-signal processing, protein structure prediction, tissue and cell engineering, biomedical image processing, analysis and visualization, high performance computing and sports bioengineering. The book's chapters are the result of many international projects in the area of bioengineering and bioinformatics done at the Research and Development Center for Bioengineering BioIRC and by the Faculty of Engineering at the University of Kragujevac, Serbia. - Presents recent advances at the crossroads of biomedical engineering and bioinformatics, one of the hottest areas in biomedical and clinical research - Discusses a wide range of leading-edge research topics, including biomechanics and bioimaging, biomedical decision support systems, data mining, personalized diagnoses, bio-signal processing, protein structure prediction, tissue and cell engineering, amongst others - Includes coverage of biomechanical, bioengineering and computational methods of treatment and diagnosis