Computational Methods In Optimal Control


Download Computational Methods In Optimal Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Methods In Optimal Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Methods in Optimal Control Problems


Computational Methods in Optimal Control Problems

Author: I.H. Mufti

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY •••••••• 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method •. •••••••••. . . . ••••••. ••••••••. • 8 3. 2 Boundary Constraints •••••••••••. ••••. • 9 3. 3 Problems with Control Constraints ••. •• 15 4. 0 SUCCESSIVE SWEEP METHOD •••••••••••••••••••• 18 4. 1 Final Time Given Implicitly ••••. •••••• 22 5. 0 SECOND-VARIATION METHOD •••••••••••••••••••• 23 6. 0 SHOOTING METHODS ••••••••••••••••••••••••••• 27 6. 1 Newton-RaphsonMethod ••••••••••••••••• 27 6.

Computational Optimal Control


Computational Optimal Control

Author: Dr Subchan Subchan

language: en

Publisher: John Wiley & Sons

Release Date: 2009-08-19


DOWNLOAD





Computational Optimal Control: Tools and Practice provides a detailed guide to informed use of computational optimal control in advanced engineering practice, addressing the need for a better understanding of the practical application of optimal control using computational techniques. Throughout the text the authors employ an advanced aeronautical case study to provide a practical, real-life setting for optimal control theory. This case study focuses on an advanced, real-world problem known as the “terminal bunt manoeuvre” or special trajectory shaping of a cruise missile. Representing the many problems involved in flight dynamics, practical control and flight path constraints, this case study offers an excellent illustration of advanced engineering practice using optimal solutions. The book describes in practical detail the real and tested optimal control software, examining the advantages and limitations of the technology. Featuring tutorial insights into computational optimal formulations and an advanced case-study approach to the topic, Computational Optimal Control: Tools and Practice provides an essential handbook for practising engineers and academics interested in practical optimal solutions in engineering. Focuses on an advanced, real-world aeronautical case study examining optimisation of the bunt manoeuvre Covers DIRCOL, NUDOCCCS, PROMIS and SOCS (under the GESOP environment), and BNDSCO Explains how to configure and optimize software to solve complex real-world computational optimal control problems Presents a tutorial three-stage hybrid approach to solving optimal control problem formulations

Computational Methods in Optimal Control


Computational Methods in Optimal Control

Author: William H. Hager

language: en

Publisher: SIAM

Release Date: 2025-02-13


DOWNLOAD





Using material from many different sources in a systematic and unified way, this self-contained book provides both rigorous mathematical theory and practical numerical insights while developing a framework for determining the convergence rate of discrete approximations to optimal control problems. Elements of the framework include the reference point, the truncation error, and a stability theory for the linearized first-order optimality conditions. Within this framework, the discretized control problem has a stationary point whose distance to the reference point is bounded in terms of the truncation error. The theory applies to a broad range of discretizations and provides completely new insights into the convergence theory for discrete approximations in optimal control, including the relationship between orthogonal collocation and Runge–Kutta methods. Throughout the book, derivatives associated with the discretized control problem are expressed in terms of a back-propagated costate. In particular, the objective derivative of a bang-bang or singular control problem with respect to a switch point of the control are obtained, which leads to the efficient solution of a class of nonsmooth control problems using a gradient-based optimizer. Computational Methods in Optimal Control: Theory and Practice is intended for numerical analysts and computational scientists. Users of the software package GPOPS may find the book useful since the theoretical basis for the GPOPS algorithm is developed within the book. It is appropriate for courses in variational analysis, numerical optimization, and the calculus of variations.