Computational Methods In Mechanical Systems

Download Computational Methods In Mechanical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Methods In Mechanical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Methods in Mechanical Systems

Author: Jorge Angeles
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
The chapters of this book summarize the lectures delivered du ring the NATO Advanced Study Institute (ASI) on Computational Methods in Mechanisms, that took place in the Sts. Constantin and Elena Resort, near Varna, on the Bulgarian Coast of the Black Sea, June 16-28, 1997. The purpose of the ASI was to bring together leading researchers in the area of mechanical systems at large, with special emphasis in the computational issues around their analysis, synthesis, and optimization, during two weeks of lectures and discussion. A total of 89 participants from 23 count ries played an active role during the lectures and sessions of contributed papers. Many of the latter are being currently reviewed for publication in specialized journals. The subject of the book is mechanical systems, Le. , systems composed of rigid and flexible bodies, coupled by mechanical means so as to constrain their various bodies in a goal-oriented manner, usually driven under computer con trol. Applications of the discipline are thus of the most varied nature, ranging from transportation systems to biomedical devices. U nder normal operation conditions, the constitutive bodies of a mechanical system can be consid ered to be rigid, the rigidity property then easing dramatically the analysis of the kinematics and dynamics of the system at hand. Examples of these systems are the suspension of a terrestrial vehicle negotiating a curve at speeds within the allowed or recommended limits and the links of multiaxis industrial robots performing conventional pick-and-place operations.
Advanced Computational Methods in Mechanical and Materials Engineering

This book provides in-depth knowledge to solve engineering, geometrical, mathematical, and scientific problems with the help of advanced computational methods with a focus on mechanical and materials engineering. Divided into three subsections covering design and fluids, thermal engineering and materials engineering, each chapter includes exhaustive literature review along with thorough analysis and future research scope. Major topics covered pertains to computational fluid dynamics, mechanical performance, design, and fabrication including wide range of applications in industries as automotive, aviation, electronics, nuclear and so forth. Covers computational methods in design and fluid dynamics with a focus on computational fluid dynamics Explains advanced material applications and manufacturing in labs using novel alloys and introduces properties in material Discusses fabrication of graphene reinforced magnesium metal matrix for orthopedic applications Illustrates simulation and optimization gear transmission, heat sink and heat exchangers application Provides unique problem-solution approach including solutions, methodology, experimental setup, and results validation This book is aimed at researchers, graduate students in mechanical engineering, computer fluid dynamics,fluid mechanics, computer modeling, machine parts, and mechatronics.
Numerical Methods for Nonsmooth Dynamical Systems

Author: Vincent Acary
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-01-30
This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.