Computational Methods For Multi Omics Data Analysis In Cancer Precision Medicine

Download Computational Methods For Multi Omics Data Analysis In Cancer Precision Medicine PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Methods For Multi Omics Data Analysis In Cancer Precision Medicine book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine

Author: Ehsan Nazemalhosseini-Mojarad
language: en
Publisher: Frontiers Media SA
Release Date: 2023-08-02
Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.
Computational Methods for Precision Oncology

Precision medicine holds great promise for the treatment of cancer and represents a unique opportunity for accelerated development and application of novel and repurposed therapeutic approaches. Current studies and clinical trials demonstrate the benefits of genomic profiling for patients whose cancer is driven by specific, targetable alterations. However, precision oncologists continue to be challenged by the widespread heterogeneity of cancer genomes and drug responses in designing personalized treatments. Chapters provide a comprehensive overview of the computational approaches, methods, and tools that enable precision oncology, as well as related biological concepts. Covered topics include genome sequencing, the architecture of a precision oncology workflow, and introduces cutting-edge research topics in the field of precision oncology. This book is intended for computational biologists, bioinformaticians, biostatisticians and computational pathologists working in precision oncology and related fields, including cancer genomics, systems biology, and immuno-oncology.
Multi-Omics Analysis of the Human Microbiome

This book introduces the rapidly evolving field of multi-omics in understanding the human microbiome. The book focuses on the technology used to generate multi-omics data, including advances in next-generation sequencing and other high-throughput methods. It also covers the application of artificial intelligence and machine learning algorithms to the analysis of multi-omics data, providing readers with an overview of the powerful computational tools that are driving innovation in this field. The chapter also explores the various bioinformatics databases and tools available for the analysis of multi-omics data. The book also delves into the application of multi-omics technology to the study of microbial diversity, including metagenomics, metatranscriptomics, and metaproteomics. The book also explores the use of these techniques to identify and characterize microbial communities in different environments, from the gut and oral microbiome to the skin microbiome and beyond. Towards theend, it focuses on the use of multi-omics in the study of microbial consortia, including mycology and the viral microbiome. The book also explores the potential of multi-omics to identify genes of biotechnological importance, providing readers with an understanding of the role that this technology could play in advancing biotech research. Finally, the book concludes with a discussion of the clinical applications of multi-omics technology, including its potential to identify disease biomarkers and develop personalized medicine approaches. Overall, this book provides readers with a comprehensive overview of this exciting field, highlighting the potential for multi-omics to transform our understanding of the microbial world.