Computational Methods For Fracture


Download Computational Methods For Fracture PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Methods For Fracture book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Methods for Fracture


Computational Methods for Fracture

Author: Timon Rabczuk

language: en

Publisher: MDPI

Release Date: 2019-10-28


DOWNLOAD





This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Computational Methods for Fracture in Porous Media


Computational Methods for Fracture in Porous Media

Author: René de Borst

language: en

Publisher: Elsevier

Release Date: 2017-10-18


DOWNLOAD





Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods provides a self-contained presentation of new modeling techniques for simulating crack propagation in fluid-saturated porous materials. This book reviews the basic equations that govern fluid-saturated porous media. A multi-scale approach to modeling fluid transport in joins, cracks, and faults is described in such a way that the resulting formulation allows for a sub-grid representation of the crack and fluid flow in the crack. Interface elements are also analyzed with their extension to the hydromechanical case. The flexibility of Extended Finite Element Method for non-stationary cracks is also explored and their formulation for fracture in porous media described. This book introduces Isogeometric finite element methods and its basic features and properties. The rapidly evolving phase-field approach to fracture is also discussed. The applications of this book's content cover various fields of engineering, making it a valuable resource for researchers in soil, rock and biomechanics. - Teaches both new and upcoming computational techniques for simulating fracture in (partially) fluid-saturated porous media - Helps readers learn how to couple modern computational methods with non-linear fracture mechanics and flow in porous media - Presents tactics on how to simulate fracture propagation in hydraulic fracturing

Fracture Mechanics


Fracture Mechanics

Author: Alan T. Zehnder

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-01-03


DOWNLOAD





Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.