Computational Mathematics Linear Programming 2

Download Computational Mathematics Linear Programming 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Mathematics Linear Programming 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Linear Programming 2

Author: George B. Dantzig
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-28
George Dantzig is widely regarded as the founder of this subject with his invention of the simplex algorithm in the 1940's. In this second volume, the theory of the items discussed in the first volume is expanded to include such additional advanced topics as variants of the simplex method; interior point methods, GUB, decomposition, integer programming, and game theory. Graduate students in the fields of operations research, industrial engineering and applied mathematics will thus find this volume of particular interest.
Computational Mathematical Programming

Author: Klaus Schittkowski
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems).