Computational Intelligence In Intelligent Data Analysis


Download Computational Intelligence In Intelligent Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Intelligence In Intelligent Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Intelligent Data Analysis and Applications


Intelligent Data Analysis and Applications

Author: Jeng-Shyang Pan

language: en

Publisher: Springer

Release Date: 2016-10-20


DOWNLOAD





This book gathers papers presented at the ECC 2016, the Third Euro-China Conference on Intelligent Data Analysis and Applications, which was held in Fuzhou City, China from November 7 to 9, 2016. The aim of the ECC is to provide an internationally respected forum for scientific research in the broad areas of intelligent data analysis, computational intelligence, signal processing, and all associated applications of artificial intelligence (AI). The third installment of the ECC was jointly organized by Fujian University of Technology, China, and VSB-Technical University of Ostrava, Czech Republic. The conference was co-sponsored by Taiwan Association for Web Intelligence Consortium, and Immersion Co., Ltd.

Computational Intelligence in Intelligent Data Analysis


Computational Intelligence in Intelligent Data Analysis

Author: Christian Moewes

language: en

Publisher: Springer

Release Date: 2012-08-23


DOWNLOAD





Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intelligence has been collected in this volume.

Computational Intelligent Data Analysis for Sustainable Development


Computational Intelligent Data Analysis for Sustainable Development

Author: Ting Yu

language: en

Publisher: CRC Press

Release Date: 2013-04-04


DOWNLOAD





Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.