Computational Intelligence For Water And Environmental Sciences

Download Computational Intelligence For Water And Environmental Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Intelligence For Water And Environmental Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Intelligence for Water and Environmental Sciences

Author: Omid Bozorg-Haddad
language: en
Publisher: Springer Nature
Release Date: 2022-07-08
This book provides a comprehensive yet fresh perspective for the cutting-edge CI-oriented approaches in water resources planning and management. The book takes a deep dive into topics like meta-heuristic evolutionary optimization algorithms (e.g., GA, PSA, etc.), data mining techniques (e.g., SVM, ANN, etc.), probabilistic and Bayesian-oriented frameworks, fuzzy logic, AI, deep learning, and expert systems. These approaches provide a practical approach to understand and resolve complicated and intertwined real-world problems that often imposed serious challenges to traditional deterministic precise frameworks. The topic caters to postgraduate students and senior researchers who are interested in computational intelligence approach to issues stemming from water and environmental sciences.
Computational Intelligence Techniques in Earth and Environmental Sciences

Author: Tanvir Islam
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-02-14
Computational intelligence techniques have enjoyed growing interest in recent decades among the earth and environmental science research communities for their powerful ability to solve and understand various complex problems and develop novel approaches toward a sustainable earth. This book compiles a collection of recent developments and rigorous applications of computational intelligence in these disciplines. Techniques covered include artificial neural networks, support vector machines, fuzzy logic, decision-making algorithms, supervised and unsupervised classification algorithms, probabilistic computing, hybrid methods and morphic computing. Further topics given treatment in this volume include remote sensing, meteorology, atmospheric and oceanic modeling, climate change, environmental engineering and management, catastrophic natural hazards, air and environmental pollution and water quality. By linking computational intelligence techniques with earth and environmental science oriented problems, this book promotes synergistic activities among scientists and technicians working in areas such as data mining and machine learning. We believe that a diverse group of academics, scientists, environmentalists, meteorologists and computing experts with a common interest in computational intelligence techniques within the earth and environmental sciences will find this book to be of great value.
Artificial Intelligence and Modeling for Water Sustainability

Artificial intelligence and the use of computational methods to extract information from data are providing adequate tools to monitor and predict water pollutants and water quality issues faster and more accurately. Smart sensors and machine learning models help detect and monitor dispersion and leakage of pollutants before they reach groundwater. With contributions from experts in academia and industries, who give a unified treatment of AI methods and their applications in water science, this book help governments, industries, and homeowners not only address water pollution problems more quickly and efficiently, but also gain better insight into the implementation of more effective remedial measures. FEATURES Provides cutting-edge AI applications in water sector. Highlights the environmental models used by experts in different countries. Discusses various types of models using AI and its tools for achieving sustainable development in water and groundwater. Includes case studies and recent research directions for environmental issues in water sector. Addresses future aspects and innovation in AI field related to watersustainability. This book will appeal to scientists, researchers, and undergraduate and graduate students majoring in environmental or computer science and industry professionals in water science and engineering, environmental management, and governmental sectors. It showcases artificial intelligence applications in detecting environmental issues, with an emphasis on the mitigation and conservation of water and underground resources.