Computational Integration

Download Computational Integration PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Integration book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Integration

This survey covers a wide range of topics fundamental to calculating integrals on computer systems and discusses both the theoretical and computational aspects of numerical and symbolic methods. It includes extensive sections on one- and multidimensional integration formulas, like polynomial, number-theoretic, and pseudorandom formulas, and deals with issues concerning the construction of numerical integration algorithms.
Handbook of Computational Methods for Integration

During the past 20 years, there has been enormous productivity in theoretical as well as computational integration. Some attempts have been made to find an optimal or best numerical method and related computer code to put to rest the problem of numerical integration, but the research is continuously ongoing, as this problem is still very much open-ended. The importance of numerical integration in so many areas of science and technology has made a practical, up-to-date reference on this subject long overdue. The Handbook of Computational Methods for Integration discusses quadrature rules for finite and infinite range integrals and their applications in differential and integral equations, Fourier integrals and transforms, Hartley transforms, fast Fourier and Hartley transforms, Laplace transforms and wavelets. The practical, applied perspective of this book makes it unique among the many theoretical books on numerical integration and quadrature. It will be a welcomed addition to the libraries of applied mathematicians, scientists, and engineers in virtually every discipline.
Geometric Numerical Integration

Author: Ernst Hairer
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches.