Computational Frameworks For Political And Social Research With Python


Download Computational Frameworks For Political And Social Research With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Frameworks For Political And Social Research With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Computational Frameworks for Political and Social Research with Python


Computational Frameworks for Political and Social Research with Python

Author: Josh Cutler

language: en

Publisher: Springer Nature

Release Date: 2020-04-22


DOWNLOAD





This book is intended to serve as the basis for a first course in Python programming for graduate students in political science and related fields. The book introduces core concepts of software development and computer science such as basic data structures (e.g. arrays, lists, dictionaries, trees, graphs), algorithms (e.g. sorting), and analysis of computational efficiency. It then demonstrates how to apply these concepts to the field of political science by working with structured and unstructured data, querying databases, and interacting with application programming interfaces (APIs). Students will learn how to collect, manipulate, and exploit large volumes of available data and apply them to political and social research questions. They will also learn best practices from the field of software development such as version control and object-oriented programming. Instructors will be supplied with in-class example code, suggested homework assignments (with solutions), and material for practical lab sessions.

Advanced Applications of Python Data Structures and Algorithms


Advanced Applications of Python Data Structures and Algorithms

Author: Galety, Mohammad Gouse

language: en

Publisher: IGI Global

Release Date: 2023-07-05


DOWNLOAD





Data structures are essential principles applicable to any programming language in computer science. Data structures may be studied more easily with Python than with any other programming language because of their interpretability, interactivity, and object-oriented nature. Computers may store and process data at an extraordinary rate and with outstanding accuracy. Therefore, it is of the utmost importance that the data is efficiently stored and is able to be accessed promptly. In addition, data processing should take as little time as feasible while maintaining the highest possible level of precision. Advanced Applications of Python Data Structures and Algorithms assists in understanding and applying the fundamentals of data structures and their many implementations and discusses the advantages and disadvantages of various data structures. Covering key topics such as Python, linked lists, datatypes, and operators, this reference work is ideal for industry professionals, computer scientists, researchers, academicians, scholars, practitioners, instructors, and students.

Hands-on TinyML


Hands-on TinyML

Author: Rohan Banerjee

language: en

Publisher: BPB Publications

Release Date: 2023-06-09


DOWNLOAD





Learn how to deploy complex machine learning models on single board computers, mobile phones, and microcontrollers KEY FEATURES ● Gain a comprehensive understanding of TinyML's core concepts. ● Learn how to design your own TinyML applications from the ground up. ● Explore cutting-edge models, hardware, and software platforms for developing TinyML. DESCRIPTION TinyML is an innovative technology that empowers small and resource-constrained edge devices with the capabilities of machine learning. If you're interested in deploying machine learning models directly on microcontrollers, single board computers, or mobile phones without relying on continuous cloud connectivity, this book is an ideal resource for you. The book begins with a refresher on Python, covering essential concepts and popular libraries like NumPy and Pandas. It then delves into the fundamentals of neural networks and explores the practical implementation of deep learning using TensorFlow and Keras. Furthermore, the book provides an in-depth overview of TensorFlow Lite, a specialized framework for optimizing and deploying models on edge devices. It also discusses various model optimization techniques that reduce the model size without compromising performance. As the book progresses, it offers a step-by-step guidance on creating deep learning models for object detection and face recognition specifically tailored for the Raspberry Pi. You will also be introduced to the intricacies of deploying TensorFlow Lite applications on real-world edge devices. Lastly, the book explores the exciting possibilities of using TensorFlow Lite on microcontroller units (MCUs), opening up new opportunities for deploying machine learning models on resource-constrained devices. Overall, this book serves as a valuable resource for anyone interested in harnessing the power of machine learning on edge devices. WHAT YOU WILL LEARN ● Explore different hardware and software platforms for designing TinyML. ● Create a deep learning model for object detection using the MobileNet architecture. ● Optimize large neural network models with the TensorFlow Model Optimization Toolkit. ● Explore the capabilities of TensorFlow Lite on microcontrollers. ● Build a face recognition system on a Raspberry Pi. ● Build a keyword detection system on an Arduino Nano. WHO THIS BOOK IS FOR This book is designed for undergraduate and postgraduate students in the fields of Computer Science, Artificial Intelligence, Electronics, and Electrical Engineering, including MSc and MCA programs. It is also a valuable reference for young professionals who have recently entered the industry and wish to enhance their skills. TABLE OF CONTENTS 1. Introduction to TinyML and its Applications 2. Crash Course on Python and TensorFlow Basics 3. Gearing with Deep Learning 4. Experiencing TensorFlow 5. Model Optimization Using TensorFlow 6. Deploying My First TinyML Application 7. Deep Dive into Application Deployment 8. TensorFlow Lite for Microcontrollers 9. Keyword Spotting on Microcontrollers 10. Conclusion and Further Reading Appendix