Computational Acoustics

Download Computational Acoustics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Acoustics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Acoustics

The book presents a state-of-art overview of numerical schemes efficiently solving the acoustic conservation equations (unknowns are acoustic pressure and particle velocity) and the acoustic wave equation (pressure of acoustic potential formulation). Thereby, the different equations model both vibrational- and flow-induced sound generation and its propagation. Latest numerical schemes as higher order finite elements, non-conforming grid techniques, discontinuous Galerkin approaches and boundary element methods are discussed. Main applications will be towards aerospace, rail and automotive industry as well as medical engineering. The team of authors are able to address these topics from the engineering as well as numerical points of view.
Computational Ocean Acoustics

Author: Finn B. Jensen
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-06-10
Senior level/graduate level text/reference presenting state-of-the- art numerical techniques to solve the wave equation in heterogeneous fluid-solid media. Numerical models have become standard research tools in acoustic laboratories, and thus computational acoustics is becoming an increasingly important branch of ocean acoustic science. The first edition of this successful book, written by the recognized leaders of the field, was the first to present a comprehensive and modern introduction to computational ocean acoustics accessible to students. This revision, with 100 additional pages, completely updates the material in the first edition and includes new models based on current research. It includes problems and solutions in every chapter, making the book more useful in teaching (the first edition had a separate solutions manual). The book is intended for graduate and advanced undergraduate students of acoustics, geology and geophysics, applied mathematics, ocean engineering or as a reference in computational methods courses, as well as professionals in these fields, particularly those working in government (especially Navy) and industry labs engaged in the development or use of propagating models.
Computational Atmospheric Acoustics

Author: E.M. Salomons
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Noise from cars, trains, and aeroplanes can be heard at large distances from the source. Accurate predictions of the loudness of the noise require accurate computations of sound propagation in the atmosphere. This book describes models that can be used for these computations. The models take into account complex effects of the atmosphere and the ground surface on sound waves, including the effects of wind and temperature distributions, atmospheric turbulence, irregular terrain, and noise barriers. The main text of the book focuses on physical effects in atmospheric acoustics. The effects are illustrated by many numerical examples. The main text requires a very limited mathematical background from the reader; detailed mathematical descriptions of the models, developed from the basic principles of acoustics, are presented in appendices. Models for moving media are compared with models that are based on the effective sound speed approach. Both two-dimensional models and three-dimensional models are presented. As meteorological effects play an important role in atmospheric acoustics, selected topics from boundary layer meteorology and the theory of turbulence are also presented.