Computation Engineering

Download Computation Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computation Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Engineering - Introduction to Numerical Methods

Author: Michael Schäfer
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-02-20
Introduction.- Modelling of Continuum Mechanical Problems.- Discretization of Problem Domain.- Finite-Volume Methods.- Finite-Element Methods.- Time Discretization.- Solution of Algebraic Systems of Equations.- Properties of Numerical Methods.- Finite-Element Methods in Structural Mechanics.- Finite-Volume Methods for Incompressible Flows.- Acceleration of Computations.- List of Symbols.- References.- Index.
Computation Engineering

Author: Ganesh Gopalakrishnan
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-09-10
It takes more e?ort to verify that digital system designs are correct than it does to design them, and as systems get more complex the proportion of cost spent on veri?cation is increasing (one estimate is that veri?cation complexity rises as the square of design complexity). Although this veri?cation crisis was predicted decades ago, it is only recently that powerful methods based on mathematical logic and automata theory have come to the designers’ rescue. The ?rst such method was equivalence checking, which automates Boolean algebra calculations.Nextcamemodelchecking,whichcanautomatically verify that designs have – or don’t have – behaviours of interest speci?ed in temporal logic. Both these methods are available today in tools sold by all the major design automation vendors. It is an amazing fact that ideas like Boolean algebra and modal logic, originating frommathematicians andphilosophersbeforemodern computers were invented, have come to underlie computer aided tools for creating hardware designs. The recent success of ’formal’ approaches to hardware veri?cation has lead to the creation of a new methodology: assertion based design, in which formal properties are incorporated into designs and are then validated by a combination of dynamic simulation and static model checking. Two industrial strength property languages based on tem- ral logic are undergoing IEEE standardisation. It is not only hardwaredesignand veri?cation that is changing: new mathematical approaches to software veri?cation are starting to be - ployed. Microsoft provides windows driver developers with veri?cation tools based on symbolic methods.
Computational Materials Engineering

Author: Koenraad George Frans Janssens
language: en
Publisher: Academic Press
Release Date: 2010-07-26
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. - Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material - Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling