Computability And Decidability

Download Computability And Decidability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computability And Decidability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computability and Decidability

Author: J. Loeckx
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The present Lecture Notes evolved from a course given at the Technische Hogeschool Eindhoven and later at the Technische Hogeschool Twente. They are intended for computer science students; more specifically, their goal is to introduce the notions of computability and decidability, and to prepare for the study of automata theory, formal language theory and the theory of computing. Except for a general mathematical background no preliminary knowledge is presupposed, but some experience in programming may be helpful. While classical treatises on computability and decidability are oriented towards the foundation of mathematics or mathematical logic, the present notes try to relate the subject to computer science. Therefore, the expose is based on the use of strings rather than on that of natural numbers; the notations are similar to those in use in automata theory; in addition, according to a common usage in formal language theory, most of the proofs of computability are reduced to the semi-formal description of a procedure the constructivity of which is apparent to anybody having some programming experience. Notwithstanding these facts the subject is treated with mathematical rigor; a great number of informal comments are inserted in order to allow a good intuitive understanding. I am indebted to all those who drew my attention to some errors and ambiguities in a preliminary version of these Notes. I want also to thank Miss L.A. Krukerink for her diligence in typing the manuscript.
Enumerability · Decidability Computability

Author: Hans Hermes
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Once we have accepted a precise replacement of the concept of algo rithm, it becomes possible to attempt the problem whether there exist well-defined collections of problems which cannot be handled by algo rithms, and if that is the case, to give concrete cases of this kind. Many such investigations were carried out during the last few decades. The undecidability of arithmetic and other mathematical theories was shown, further the unsolvability of the word problem of group theory. Many mathematicians consider these results and the theory on which they are based to be the most characteristic achievements of mathe matics in the first half of the twentieth century. If we grant the legitimacy of the suggested precise replacements of the concept of algorithm and related concepts, then we can say that the mathematicians have shown by strictly mathematical methods that there exist mathematical problems which cannot be dealt with by the methods of calculating mathematics. In view of the important role which mathematics plays today in our conception of the world this fact is of great philosophical interest. Post speaks of a natural law about the "limitations of the mathematicizing power of Homo Sapiens". Here we also find a starting point for the discussion of the question, what the actual creative activity of the mathematician consists in. In this book we shall give an introduction to the theory of algorithms.