Compressive Sensing Of Earth Observations


Download Compressive Sensing Of Earth Observations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Compressive Sensing Of Earth Observations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Compressive Sensing of Earth Observations


Compressive Sensing of Earth Observations

Author: C.H. Chen

language: en

Publisher: CRC Press

Release Date: 2017-05-25


DOWNLOAD





Future remote sensing systems will make extensive use of Compressive Sensing (CS) as it becomes more integrated into the system design with increased high resolution sensor developments and the rising earth observation data generated each year. Written by leading experts in the field Compressive Sensing of Earth Observations provides a comprehensive and balanced coverage of the theory and applications of CS in all aspects of earth observations. This work covers a myriad of practical aspects such as the use of CS in detection of human vital signs in a cluttered environment and the corresponding modeling of rib-cage breathing. Readers are also presented with three different applications of CS to the ISAR imaging problem, which includes image reconstruction from compressed data, resolution enhancement, and image reconstruction from incomplete data.

Deep Learning for Remote Sensing Images with Open Source Software


Deep Learning for Remote Sensing Images with Open Source Software

Author: Rémi Cresson

language: en

Publisher: CRC Press

Release Date: 2020-07-15


DOWNLOAD





In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.

Radar Scattering and Imaging of Rough Surfaces


Radar Scattering and Imaging of Rough Surfaces

Author: Kun-Shan Chen

language: en

Publisher: CRC Press

Release Date: 2020-11-19


DOWNLOAD





Radar scattering and imaging of rough surfaces is an active interdisciplinary area of research with many practical applications in fields such as mineral and resource exploration, ocean and physical oceanography, military and national defense, planetary exploration, city planning and land use, environmental science, and many more. By focusing on the most advanced analytical and numerical modeling and describing both forward and inverse modeling, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® connects the scattering process to imaging techniques by vivid examples through numerical and experimental demonstrations and provides computer codes and practical uses. This book is unique in its simultaneous treatment of radar scattering and imaging. Key Features Bridges physical modeling with simulation for resolving radar imaging problems (the first comprehensive work to do so) Provides excellent basic and advanced information for microwave remote-sensing professionals in various fields of science and engineering Covers most advanced analytical and numerical modeling for both backscattering and bistatic scattering Includes MATLAB® codes useful not only for academics but also for radar engineers and scientists to develop tools applicable in different areas of earth studies Covering both the theoretical and the practical, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® is an invaluable resource for professionals and students using remote sensing to study and explain the Earth and its processes. University and research institutes, electrical and radar engineers, remote-sensing image users, application software developers, students, and academics alike will benefit from this book. The author, Kun-Shan Chen, is an internationally known and respected engineer and scientist and an expert in the field of electromagnetic modeling.