Component And Correspondence Analysis

Download Component And Correspondence Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Component And Correspondence Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Principal Component and Correspondence Analyses Using R

With the right R packages, R is uniquely suited to perform Principal Component Analysis (PCA), Correspondence Analysis (CA), Multiple Correspondence Analysis (MCA), and metric multidimensional scaling (MMDS). The analyses depicted in this book use several packages specially developed for theses analyses and include (among others): the ExPosition suite, FactoMiner , ade4, and ca. The authors present each technique with one or several small examples that demonstrate how to enter the data, perform the standard analyses, and obtain professional quality graphics. Through explanations of the major options for how to carry out each method, readers can tailor the content of this book to their particular goals. Explanations include the effects of using particular packages. ExPosition is a great choice for the methods as it was written specifically for this book. However, options abound and are illustrated within unique scenarios. The first chapter includes installation of the packages. At the end of the book, a short appendix presents critical mathematical material for readers who want to go deeper into the theory.
Component and Correspondence Analysis

Contributions to this work begin from a homogeneous-analytic point of view, then go further to analyze continuous variables, extending the geometrical approach of Gifi, and applying functional analytic techniques to problems involving replicated time series data (which are not subject to classical correspondence analysis and principal component analysis). Closing chapters address probability coding (which is related to fuzzy coding), and two approaches to component analysis: optimal scaling (which uses montone splines) embedded in a more classical statistical framework; and the connection between explorative multivariate data analysis and confirmation analysis based on statistical modelling.
An Introduction to Correspondence Analysis

Master the fundamentals of correspondence analysis with this illuminating resource An Introduction to Correspondence Analysis assists researchers in improving their familiarity with the concepts, terminology, and application of several variants of correspondence analysis. The accomplished academics and authors deliver a comprehensive and insightful treatment of the fundamentals of correspondence analysis, including the statistical and visual aspects of the subject. Written in three parts, the book begins by offering readers a description of two variants of correspondence analysis that can be applied to two-way contingency tables for nominal categories of variables. Part Two shifts the discussion to categories of ordinal variables and demonstrates how the ordered structure of these variables can be incorporated into a correspondence analysis. Part Three describes the analysis of multiple nominal categorical variables, including both multiple correspondence analysis and multi-way correspondence analysis. Readers will benefit from explanations of a wide variety of specific topics, for example: Simple correspondence analysis, including how to reduce multidimensional space, measuring symmetric associations with the Pearson Ratio, constructing low-dimensional displays, and detecting statistically significant points Non-symmetrical correspondence analysis, including quantifying asymmetric associations Simple ordinal correspondence analysis, including how to decompose the Pearson Residual for ordinal variables Multiple correspondence analysis, including crisp coding and the indicator matrix, the Burt Matrix, and stacking Multi-way correspondence analysis, including symmetric multi-way analysis Perfect for researchers who seek to improve their understanding of key concepts in the graphical analysis of categorical data, An Introduction to Correspondence Analysis will also assist readers already familiar with correspondence analysis who wish to review the theoretical and foundational underpinnings of crucial concepts.