Complex Systems In Knowledge Based Environments Theory Models And Applications

Download Complex Systems In Knowledge Based Environments Theory Models And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Systems In Knowledge Based Environments Theory Models And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Complex Systems in Knowledge-based Environments: Theory, Models and Applications

Author: Andreas Tolk
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-01-17
The tremendous growth in the availability of inexpensive computing power and easy availability of computers have generated tremendous interest in the design and imp- mentation of Complex Systems. Computer-based solutions offer great support in the design of Complex Systems. Furthermore, Complex Systems are becoming incre- ingly complex themselves. This research book comprises a selection of state-of-the-art contributions to topics dealing with Complex Systems in a Knowledge-based En- ronment. Complex systems are ubiquitous. Examples comprise, but are not limited to System of Systems, Service-oriented Approaches, Agent-based Systems, and Complex Distributed Virtual Systems. These are application domains that require knowledge of engineering and management methods and are beyond the scope of traditional systems. The chapters in this book deal with a selection of topics which range from unc- tainty representation, management and the use of ontological means which support and are large-scale business integration. All contributions were invited and are based on the recognition of the expertise of the contributing authors in the field. By colle- ing these sources together in one volume, the intention was to present a variety of tools to the reader to assist in both study and work. The second intention was to show how the different facets presented in the chapters are complementary and contribute towards this emerging discipline designed to aid in the analysis of complex systems.
Modelling Dynamics in Processes and Systems

Author: Wojciech Mitkowski
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-06-01
Dynamics is what characterizes virtually all phenomenae we face in the real world, and processes that proceed in practically all kinds of inanimate and animate systems, notably social systems. For our purposes dynamics is viewed as time evolution of some characteristic features of the phenomenae or processes under consideration. It is obvious that in virtually all non-trivial problems dynamics can not be neglected, and should be taken into account in the analyses to, first, get insight into the problem consider, and second, to be able to obtain meaningful results. A convenient tool to deal with dynamics and its related evolution over time is to use the concept of a dynamic system which, for the purposes of this volume can be characterized by the input (control), state and output spaces, and a state transition equation. Then, starting from an initial state, we can find a sequence of consecutive states (outputs) under consecutive inputs (controls). That is, we obtain a trajectory. The state transition equation may be given in various forms, exemplified by differential and difference equations, linear or nonlinear, deterministic or stochastic, or even fuzzy (imprecisely specified), fully or partially known, etc. These features can give rise to various problems the analysts may encounter like numerical difficulties, instability, strange forms of behavior (e.g. chaotic), etc. This volume is concerned with some modern tools and techniques which can be useful for the modeling of dynamics. We focus our attention on two important areas which play a key role nowadays, namely automation and robotics, and biological systems. We also add some new applications which can greatly benefit from the availability of effective and efficient tools for modeling dynamics, exemplified by some applications in security systems.
Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization

Author: Godfrey C. Onwubolu
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-01-13
This is the first book devoted entirely to Differential Evolution (DE) for global permutative-based combinatorial optimization. Since its original development, DE has mainly been applied to solving problems characterized by continuous parameters. This means that only a subset of real-world problems could be solved by the original, classical DE algorithm. This book presents in detail the various permutative-based combinatorial DE formulations by their initiators in an easy-to-follow manner, through extensive illustrations and computer code. It is a valuable resource for professionals and students interested in DE in order to have full potentials of DE at their disposal as a proven optimizer. All source programs in C and Mathematica programming languages are downloadable from the website of Springer.