Complex Proofs Of Real Theorems


Download Complex Proofs Of Real Theorems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Proofs Of Real Theorems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Complex Proofs of Real Theorems


Complex Proofs of Real Theorems

Author: Peter D. Lax

language: en

Publisher: American Mathematical Soc.

Release Date: 2011-12-21


DOWNLOAD





Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Zelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime number theorem. Four brief appendices provide all necessary background in complex analysis beyond the standard first year graduate course. Lovers of analysis and beautiful proofs will read and reread this slim volume with pleasure and profit.

Why Prove it Again?


Why Prove it Again?

Author: John W. Dawson, Jr.

language: en

Publisher: Birkhäuser

Release Date: 2015-07-15


DOWNLOAD





This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues’ Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.

Introduction to Mathematical Proofs


Introduction to Mathematical Proofs

Author: Charles Roberts

language: en

Publisher: CRC Press

Release Date: 2009-06-24


DOWNLOAD





Shows How to Read & Write Mathematical ProofsIdeal Foundation for More Advanced Mathematics CoursesIntroduction to Mathematical Proofs: A Transition facilitates a smooth transition from courses designed to develop computational skills and problem solving abilities to courses that emphasize theorem proving. It helps students develop the skills n