Complex Models And Computational Methods In Statistics


Download Complex Models And Computational Methods In Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Models And Computational Methods In Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Complex Models and Computational Methods in Statistics


Complex Models and Computational Methods in Statistics

Author: Matteo Grigoletto

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-01-26


DOWNLOAD





The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.

Computational and Statistical Methods for Analysing Big Data with Applications


Computational and Statistical Methods for Analysing Big Data with Applications

Author: Shen Liu

language: en

Publisher: Academic Press

Release Date: 2015-11-20


DOWNLOAD





Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Spatial Statistics and Computational Methods


Spatial Statistics and Computational Methods

Author: Jesper Møller

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001.