Complex Dynamics And Renormalization Am 135 Volume 135

Download Complex Dynamics And Renormalization Am 135 Volume 135 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Dynamics And Renormalization Am 135 Volume 135 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Complex Dynamics and Renormalization (AM-135), Volume 135

Addressing researchers and graduate students in the active meeting ground of analysis, geometry, and dynamics, this book presents a study of renormalization of quadratic polynomials and a rapid introduction to techniques in complex dynamics. Its central concern is the structure of an infinitely renormalizable quadratic polynomial f(z) = z2 + c. As discovered by Feigenbaum, such a mapping exhibits a repetition of form at infinitely many scales. Drawing on universal estimates in hyperbolic geometry, this work gives an analysis of the limiting forms that can occur and develops a rigidity criterion for the polynomial f. This criterion supports general conjectures about the behavior of rational maps and the structure of the Mandelbrot set. The course of the main argument entails many facets of modern complex dynamics. Included are foundational results in geometric function theory, quasiconformal mappings, and hyperbolic geometry. Most of the tools are discussed in the setting of general polynomials and rational maps.
Rotation Sets and Complex Dynamics

This monograph examines rotation sets under the multiplication by d (mod 1) map and their relation to degree d polynomial maps of the complex plane. These sets are higher-degree analogs of the corresponding sets under the angle-doubling map of the circle, which played a key role in Douady and Hubbard's work on the quadratic family and the Mandelbrot set. Presenting the first systematic study of rotation sets, treating both rational and irrational cases in a unified fashion, the text includes several new results on their structure, their gap dynamics, maximal and minimal sets, rigidity, and continuous dependence on parameters. This abstract material is supplemented by concrete examples which explain how rotation sets arise in the dynamical plane of complex polynomial maps and how suitable parameter spaces of such polynomials provide a complete catalog of all such sets of a given degree. As a main illustration, the link between rotation sets of degree 3 and one-dimensional families of cubic polynomials with a persistent indifferent fixed point is outlined. The monograph will benefit graduate students as well as researchers in the area of holomorphic dynamics and related fields.
Holomorphic Dynamics and Renormalization

Schwarzian derivatives and cylinder maps by A. Bonifant and J. Milnor Holomorphic dynamics: Symbolic dynamics and self-similar groups by V. Nekrashevych Are there critical points on the boundaries of mother hedgehogs? by D. K. Childers Finiteness for degenerate polynomials by L. DeMarco Cantor webs in the parameter and dynamical planes of rational maps by R. L. Devaney Simple proofs of uniformization theorems by A. A. Glutsyuk The Yoccoz combinatorial analytic invariant by C. L. Petersen and P. Roesch Bifurcation loci of exponential maps and quadratic polynomials: Local connectivity, triviality of fibers, and density of hyperbolicity by L. Rempe and D. Schleicher Rational and transcendental Newton maps by J. Ruckert Newton's method as a dynamical system: Efficient root finding of polynomials and the Riemann $\zeta$ function by D. Schleicher The external boundary of $M_2$ by V. Timorin Renormalization: Renormalization of vector fields by H. Koch Renormalization of arbitrary weak noises for one-dimensional critical dynamical systems: Summary of results and numerical explorations by O. Diaz-Espinosa and R. de la Llave KAM for the nonlinear Schrodinger equation--A short presentation by H. L. Eliasson and S. B. Kuksin Siegel disks and renormalization fixed points by M. Yampolsky