Complex Analytic Geometry From The Localization Viewpoint

Download Complex Analytic Geometry From The Localization Viewpoint PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Analytic Geometry From The Localization Viewpoint book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Complex Analytic Geometry: From The Localization Viewpoint

Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this — topological and differential geometric — and the combination of the two brings out further fruitful results. For this, on one hand, we present detailed description of the Alexander duality in combinatorial topology. On the other hand, we give a thorough presentation of the Čech-de Rham cohomology and integration theory on it. This viewpoint provides us with the way for clearer and more precise presentations of the central concepts as well as fundamental and important results that have been treated only globally so far. It also brings new perspectives into the subject and leads to further results and applications.The book starts off with basic material and continues by introducing characteristic classes via both the obstruction theory and the Chern-Weil theory, explaining the idea of localization of characteristic classes and presenting the aforementioned invariants and relations in a unified way from this perspective. Various related topics are also discussed. The expositions are carried out in a self-containing manner and includes recent developments. The profound consequences of this subject will make the book useful for students and researchers in fields as diverse as Algebraic Geometry, Complex Analytic Geometry, Differential Geometry, Topology, Singularity Theory, Complex Dynamical Systems, Algebraic Analysis and Mathematical Physics.
Minimal Surfaces from a Complex Analytic Viewpoint

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.
Hodge Theory, Complex Geometry, and Representation Theory

Author: Mark Green
language: en
Publisher: American Mathematical Soc.
Release Date: 2013-11-05
This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.