Completeness Of Root Functions Of Regular Differential Operators

Download Completeness Of Root Functions Of Regular Differential Operators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Completeness Of Root Functions Of Regular Differential Operators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Completeness of Root Functions of Regular Differential Operators

The precise mathematical investigation of various natural phenomena is an old and difficult problem. This book is the first to deal systematically with the general non-selfadjoint problems in mechanics and physics. It deals mainly with bounded domains with smooth boundaries, but also considers elliptic boundary value problems in tube domains, i.e. in non-smooth domains. This volume will be of particular value to those working in differential equations, functional analysis, and equations of mathematical physics.
Differential-Operator Equations

The theory of differential-operator equations is one of two modern theories for the study of both ordinary and partial differential equations, with numerous applications in mechanics and theoretical physics. Although a number of published works address differential-operator equations of the first and second orders, to date none offer a treatment of the higher orders. In Differential-Operator Equations, the authors present a systematic treatment of the theory of differential-operator equations of higher order, with applications to partial differential equations. They construct a theory that allows application to both regular and irregular differential problems. In particular, they study problems that cannot be solved by various known methods and irregular problems not addressed in existing monographs. These include Birkhoff-irregularity, non-local boundary value conditions, and non-smoothness of the boundary of the domains. Among this volume's other points of interest are: The Abel basis property of a system of root functions Irregular boundary value problems The theory of hyperbolic equations in Gevrey space The theory of boundary value problems for elliptic differential equations with a parameter
Application of Abstract Differential Equations to Some Mechanical Problems

Author: I. Titeux
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
PREFACE The theory of differential-operator equations has been described in various monographs, but the initial physical problem which leads to these equations is often hidden. When the physical problem is studied, the mathematical proofs are either not given or are quickly explained. In this book, we give a systematic treatment of the partial differential equations which arise in elastostatic problems. In particular, we study problems which are obtained from asymptotic expansion with two scales. Here the methods of operator pencils and differential-operator equations are used. This book is intended for scientists and graduate students in Functional Analy sis, Differential Equations, Equations of Mathematical Physics, and related topics. It would undoubtedly be very useful for mechanics and theoretical physicists. We would like to thank Professors S. Yakubov and S. Kamin for helpfull dis cussions of some parts of the book. The work on the book was also partially supported by the European Community Program RTN-HPRN-CT-2002-00274. xiii INTRODUCTION In first two sections of the introduction, a classical mathematical problem will be exposed: the Laplace problem. The domain of definition will be, on the first time, an infinite strip and on the second time, a sector. To solve this problem, a well known separation of variables method will be used. In this way, the structure of the solution can be explicitly found. For more details about the separation of variables method exposed in this part, the reader can refer to, for example, the book by D. Leguillon and E. Sanchez-Palencia [LS].