Comparison And Oscillation Theory Of Linear Differential Equations By C A Swanson

Download Comparison And Oscillation Theory Of Linear Differential Equations By C A Swanson PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Comparison And Oscillation Theory Of Linear Differential Equations By C A Swanson book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Comparison and Oscillation Theory of Linear Differential Equations

Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.
Comparison and Oscillation Theory of Linear Differential Equations by C A Swanson

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Oscillation Theory for Difference and Functional Differential Equations

Author: R.P. Agarwal
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.