Combinatorics Of Determinantal Ideals

Download Combinatorics Of Determinantal Ideals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorics Of Determinantal Ideals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Combinatorics of Determinantal Ideals

The study of determinantal ideals and of classical determinantal rings is an old topic of commutative algebra. As in most of the cases, the theory evolved from algebraic geometry, and soon became an important topic in commutative algebra. Looking back, one can say that it is the merit of Eagon and Northcott to be the first who brought to the attention of algebraists the determinantal ideals and investigated them by the methods of commutative and homological algebra. Later on, Buchsbaum and Eisenbud, in a long series of articles, went further along the way of homological investigation of determinantal ideals, while Eagon and Hochster studied them using methods of commutative algebra in order to prove that the classical determinantal rings are normal Cohen-Macaulay domains. As shown later by C. DeConcini, D. Eisenbud, and C. Procesi the appropriate framework including all three types of rings is that of algebras with straightening law, and the standard monomial theory on which these algebras are based yields computationally effective results. A coherent treatment of determinantal ideals from this point of view was given by Bruns and Vetter in their seminal book. The author's book aims to a thorough treatment of all three types of determinantal rings in the light of the achievements of the last fifteen years since the publication of Bruns and Vetter's book. They implicitly assume that the reader is familiar with the basics of commutative algebra. However, the authors include some of the main notions and results from Bruns and Vetter's book for the sake of completeness, but without proofs. The authors recommend the reader to first look at the book of Bruns and Vetter in order to get a feel for the flavour of this field. The author's book is meant to be a reference text for the current state of research in the theory of determinantal rings. It was structured in such a way that it can be used as textbook for a one semester graduate course in advanced topics in Algebra, and at the PhD level.
Determinantal Ideals

This comprehensive overview of determinantal ideals includes an analysis of the latest results. Following the carefully structured presentation, you’ll develop new insights into addressing and solving open problems in liaison theory and Hilbert schemes. Three principal problems are addressed in the book: CI-liaison class and G-liaison class of standard determinantal ideals; the multiplicity conjecture for standard determinantal ideals; and unobstructedness and dimension of families of standard determinantal ideals. The author, Rosa M. Miro-Roig, is the winner of the 2007 Ferran Sunyer i Balaguer Prize.
Combinatorial Commutative Algebra

Author: Ezra Miller
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-11-13
Combinatorial commutative algebra is an active area of research with thriving connections to other fields of pure and applied mathematics. This book provides a self-contained introduction to the subject, with an emphasis on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determinantal rings. The eighteen chapters cover a broad spectrum of topics, ranging from homological invariants of monomial ideals and their polyhedral resolutions, to hands-on tools for studying algebraic varieties with group actions, such as toric varieties, flag varieties, quiver loci, and Hilbert schemes. Over 100 figures, 250 exercises, and pointers to the literature make this book appealing to both graduate students and researchers.