Combinatorial Optimization Under Uncertainty

Download Combinatorial Optimization Under Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorial Optimization Under Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Combinatorial Optimization Under Uncertainty

This book discusses the basic ideas, underlying principles, mathematical formulations, analysis and applications of the different combinatorial problems under uncertainty and attempts to provide solutions for the same. Uncertainty influences the behaviour of the market to a great extent. Global pandemics and calamities are other factors which affect and augment unpredictability in the market. The intent of this book is to develop mathematical structures for different aspects of allocation problems depicting real life scenarios. The novel methods which are incorporated in practical scenarios under uncertain circumstances include the STAR heuristic approach, Matrix geometric method, Ranking function and Pythagorean fuzzy numbers, to name a few. Distinct problems which are considered in this book under uncertainty include scheduling, cyclic bottleneck assignment problem, bilevel transportation problem, multi-index transportation problem, retrial queuing, uncertain matrix games, optimal production evaluation of cotton in different soil and water conditions, the healthcare sector, intuitionistic fuzzy quadratic programming problem, and multi-objective optimization problem. This book may serve as a valuable reference for researchers working in the domain of optimization for solving combinatorial problems under uncertainty. The contributions of this book may further help to explore new avenues leading toward multidisciplinary research discussions.
Optimization Under Uncertainty with Applications to Aerospace Engineering

Author: Massimiliano Vasile
language: en
Publisher: Springer Nature
Release Date: 2021-02-15
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
Robust Optimization

Author: Aharon Ben-Tal
language: en
Publisher: Princeton University Press
Release Date: 2009-08-10
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.