Combinatorial Algebra Syntax And Semantics

Download Combinatorial Algebra Syntax And Semantics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorial Algebra Syntax And Semantics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Combinatorial Algebra: Syntax and Semantics

Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the “Further reading and open problems” sections at the end of Chapters 2 –5. The book can also be used for self-study, engaging those beyond t he classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.
Grobner-shirshov Bases: Normal Forms, Combinatorial And Decision Problems In Algebra

The book is about (associative, Lie and other) algebras, groups, semigroups presented by generators and defining relations. They play a great role in modern mathematics. It is enough to mention the quantum groups and Hopf algebra theory, the Kac-Moody and Borcherds algebra theory, the braid groups and Hecke algebra theory, the Coxeter groups and semisimple Lie algebra theory, the plactic monoid theory. One of the main problems for such presentations is the problem of normal forms of their elements. Classical examples of such normal forms give the Poincaré-Birkhoff-Witt theorem for universal enveloping algebras and Artin-Markov normal form theorem for braid groups in Burau generators.What is now called Gröbner-Shirshov bases theory is a general approach to the problem. It was created by a Russian mathematician A I Shirshov (1921-1981) for Lie algebras (explicitly) and associative algebras (implicitly) in 1962. A few years later, H Hironaka created a theory of standard bases for topological commutative algebra and B Buchberger initiated this kind of theory for commutative algebras, the Gröbner basis theory. The Shirshov paper was largely unknown outside Russia. The book covers this gap in the modern mathematical literature. Now Gröbner-Shirshov bases method has many applications both for classical algebraic structures (associative, Lie algebra, groups, semigroups) and new structures (dialgebra, pre-Lie algebra, Rota-Baxter algebra, operads). This is a general and powerful method in algebra.
Algorithmic and Combinatorial Algebra

Author: L.A. Bokut'
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Even three decades ago, the words 'combinatorial algebra' contrasting, for in stance, the words 'combinatorial topology,' were not a common designation for some branch of mathematics. The collocation 'combinatorial group theory' seems to ap pear first as the title of the book by A. Karras, W. Magnus, and D. Solitar [182] and, later on, it served as the title of the book by R. C. Lyndon and P. Schupp [247]. Nowadays, specialists do not question the existence of 'combinatorial algebra' as a special algebraic activity. The activity is distinguished not only by its objects of research (that are effectively given to some extent) but also by its methods (ef fective to some extent). To be more exact, we could approximately define the term 'combinatorial algebra' for the purposes of this book, as follows: So we call a part of algebra dealing with groups, semi groups , associative algebras, Lie algebras, and other algebraic systems which are given by generators and defining relations {in the first and particular place, free groups, semigroups, algebras, etc. )j a part in which we study universal constructions, viz. free products, lINN-extensions, etc. j and, finally, a part where specific methods such as the Composition Method (in other words, the Diamond Lemma, see [49]) are applied. Surely, the above explanation is far from covering the full scope of the term (compare the prefaces to the books mentioned above).