Coloring Mixed Hypergraphs Theory Algorithms And Applications

Download Coloring Mixed Hypergraphs Theory Algorithms And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Coloring Mixed Hypergraphs Theory Algorithms And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Coloring Mixed Hypergraphs: Theory, Algorithms and Applications

Author: Vitaly Ivanovich Voloshin
language: en
Publisher: American Mathematical Soc.
Release Date: 2002
The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory ofcolorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and the maximum number of colors. This feature pervades the theory, methods, algorithms, and applications of mixed hypergraph coloring. The book has broad appeal. It will be of interest to bothpure and applied mathematicians, particularly those in the areas of discrete mathematics, combinatorial optimization, operations research, computer science, software engineering, molecular biology, and related businesses and industries. It also makes a nice supplementary text for courses in graph theory and discrete mathematics. This is especially useful for students in combinatorics and optimization. Since the area is new, students will have the chance at this stage to obtain results that maybecome classic in the future.
Coloring Mixed Hypergraphs

The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th.
Ottawa Lectures on Admissible Representations of Reductive P-adic Groups

Author: Clifton Cunningham
language: en
Publisher: American Mathematical Soc.
Release Date: 2009-01-01