Clustering In Bioinformatics And Drug Discovery

Download Clustering In Bioinformatics And Drug Discovery PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Clustering In Bioinformatics And Drug Discovery book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Clustering in Bioinformatics and Drug Discovery

With a DVD of color figures, Clustering in Bioinformatics and Drug Discovery provides an expert guide on extracting the most pertinent information from pharmaceutical and biomedical data. It offers a concise overview of common and recent clustering methods used in bioinformatics and drug discovery.Setting the stage for subsequent material, the firs
Clustering in Bioinformatics and Drug Discovery

Author: JOHN DAVID. MACCUISH MACCUISH (NORAH E.)
language: en
Publisher: CRC Press
Release Date: 2019-07-02
With a DVD of color figures, Clustering in Bioinformatics and Drug Discovery provides an expert guide on extracting the most pertinent information from pharmaceutical and biomedical data. It offers a concise overview of common and recent clustering methods used in bioinformatics and drug discovery. Setting the stage for subsequent material, the first three chapters of the book introduce statistical learning theory, exploratory data analysis, clustering algorithms, different types of data, graph theory, and various clustering forms. In the following chapters on partitional, cluster sampling, and hierarchical algorithms, the book provides readers with enough detail to obtain a basic understanding of cluster analysis for bioinformatics and drug discovery. The remaining chapters cover more advanced methods, such as hybrid and parallel algorithms, as well as details related to specific types of data, including asymmetry, ambiguity, validation measures, and visualization. This book explores the application of cluster analysis in the areas of bioinformatics and cheminformatics as they relate to drug discovery. Clarifying the use and misuse of clustering methods, it helps readers understand the relative merits of these methods and evaluate results so that useful hypotheses can be developed and tested.
Data Clustering: Theory, Algorithms, and Applications, Second Edition

Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.