Clustering Classification And Time Series Prediction By Using Artificial Neural Networks

Download Clustering Classification And Time Series Prediction By Using Artificial Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Clustering Classification And Time Series Prediction By Using Artificial Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Clustering, Classification, and Time Series Prediction by Using Artificial Neural Networks

This book provides a new model for clustering, classification, and time series prediction by using artificial neural networks to computationally simulate the behavior of the cognitive functions of the brain is presented. This model focuses on the study of intelligent hybrid neural systems and their use in time series analysis and decision support systems. Therefore, through the development of eight case studies, multiple time series related to the following problems are analyzed: traffic accidents, air quality and multiple global indicators (energy consumption, birth rate, mortality rate, population growth, inflation, unemployment, sustainable development, and quality of life). The main contribution consists of a Generalized Type-2 fuzzy integration of multiple indicators (time series) using both supervised and unsupervised neural networks and a set of Type-1, Interval Type-2, and Generalized Type-2 fuzzy systems. The obtained results show the advantages of the proposed model of Generalized Type-2 fuzzy integration of multiple time series attributes. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic techniques for solving problems in classification and prediction. We consider that this book can also be used to get novel ideas for new lines of research, or to continue the lines of research proposed by the authors of the book.
Time Series Clustering and Classification

The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website
Proceedings of the International Conference on Cognitive and Intelligent Computing

This book presents original, peer-reviewed select articles from the International Conference on Cognitive & Intelligent Computing (ICCIC – 2021), held on December 11–12, 2021, at Hyderabad, India. The proceedings has cutting edge Research outcome related to Machine learning in control applications, Soft computing, Pattern Recognition, Decision Support Systems, Text analytics and NLP, Statistical Learning, Neural Network Learning, Learning Through Fuzzy Logic, Learning Through Evolution (Evolutionary Algorithms), Reinforcement Learning, Multi-Strategy Learning, Cooperative Learning, Planning And Learning, Multi-Agent Learning, Online And Incremental Learning, Scalability Of Learning Algorithms, Inductive Learning, Inductive Logic Programming, Bayesian Networks, Support Vector Machines, Case-Based Reasoning, Multi-Agent Systems, Human–Computer Interaction, Data Mining and Knowledge Discovery, Knowledge Management and Networks, Data Intensive Computing Architecture, Medicine, Health, Bioinformatics, and Systems Biology, Industrial and Engineering Applications, Security Applications, Smart Cities, Game Playing and Problem Solving, Intelligent Virtual Environments, Economics, Business, And Forecasting Applications. Articles in the book are carefully selected on the basis of their application orientation. The content is expected to be especially useful for Professionals, Researchers, Research students working in the area of cognitive and intelligent computing.