Cloud Analytics With Microsoft Azure

Download Cloud Analytics With Microsoft Azure PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cloud Analytics With Microsoft Azure book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hands-on Cloud Analytics with Microsoft Azure Stack

Explore and work with various Microsoft Azure services for real-time Data Analytics KEY FEATURESÊ Understanding what Azure can do with your data Understanding the analytics services offered by Azure Understand how data can be transformed to generate more data Understand what is done after a Machine Learning model is builtÊ Go through some Data Analytics real-world use cases ÊÊ DESCRIPTIONÊ Data is the key input for Analytics. Building and implementing data platforms such as Data Lakes, modern Data Marts, and Analytics at scale require the right cloud platform that Azure provides through its services. The book starts by sharing how analytics has evolved and continues to evolve. Following the introduction, you will deep dive into ingestion technologies. You will learn about Data processing services in Azure. You will next learn about what is meant by a Data Lake and understand how Azure Data Lake Storage is used for analytical workloads. You will then learn about critical services that will provide actual Machine Learning capabilities in Azure. The book also talks about Azure Data Catalog for cataloging, Azure AD for Access Management, Web Apps and PowerApps for cloud web applications, Cognitive services for Speech, Vision, Search and Language, Azure VM for computing and Data Science VMs, Functions as serverless computing, Kubernetes and Containers as deployment options. Towards the end, the book discusses two use cases on Analytics. WHAT WILL YOU LEARNÊÊ Explore and work with various Azure services Orchestrate and ingest data using Azure Data Factory Learn how to use Azure Stream Analytics Get to know more about Synapse Analytics and its features Learn how to use Azure Analysis Services and its functionalities Ê WHO THIS BOOK IS FORÊ This book is for anyone who has basic to intermediate knowledge of cloud and analytics concepts and wants to use Microsoft Azure for Data Analytics. This book will also benefit Data Scientists who want to use Azure for Machine Learning. Ê TABLE OF CONTENTSÊÊ 1. Ê Data and its power 2. Ê Evolution of Analytics and its Types 3. Ê Internet of Things 4. Ê AI and ML 5. Ê Why cloud 6. Ê What are a data lake and a modern datamart 7. Ê Introduction to Azure services 8. Ê Types of data 9. Ê Azure Data Factory 10. Stream Analytics 11. Azure Data Lake Store and Azure Storage 12. Cosmos DB 13.Ê Synapse Analytics 14.Ê Azure Databricks 15.Ê Azure Analysis Services 16.Ê Power BI 17.Ê Azure Machine Learning 18.Ê Sample Architectures and synergies - Real-Time and Batch 19.Ê Azure Data Catalog 20.Ê Azure Active Directory 21.Ê Azure Webapps 22.Ê Power apps 23.Ê Time Series Insights 24.Ê Azure Cognitive Services 25.Ê Azure Logicapps 26.Ê Azure VM 27.Ê Azure Functions 28.Ê Azure Containers 29.Ê Azure KubernetesÊ Service 30.Ê Use Case 1 31.Ê Use Case 2
Designing Distributed Systems

Author: Brendan Burns
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2018-02-20
Without established design patterns to guide them, developers have had to build distributed systems from scratch, and most of these systems are very unique indeed. Today, the increasing use of containers has paved the way for core distributed system patterns and reusable containerized components. This practical guide presents a collection of repeatable, generic patterns to help make the development of reliable distributed systems far more approachable and efficient. Author Brendan Burns—Director of Engineering at Microsoft Azure—demonstrates how you can adapt existing software design patterns for designing and building reliable distributed applications. Systems engineers and application developers will learn how these long-established patterns provide a common language and framework for dramatically increasing the quality of your system. Understand how patterns and reusable components enable the rapid development of reliable distributed systems Use the side-car, adapter, and ambassador patterns to split your application into a group of containers on a single machine Explore loosely coupled multi-node distributed patterns for replication, scaling, and communication between the components Learn distributed system patterns for large-scale batch data processing covering work-queues, event-based processing, and coordinated workflows
Cloud Analytics with Microsoft Azure

Leverage the power of Azure to get efficient data insights from your big data in real time Key Features Explore the basics of cloud analytics using Azure Discover different ways to process and visualize your data easily Learn to use Azure Synapse Analytics (formerly known as Azure SQL Data Warehouse) to derive real-time customer insights Book Description With data being generated at an exponential speed, organizations all over the world are migrating their infrastructure to the cloud. Application management becomes much easier when you use a cloud platform to build, manage, and deploy your services and applications. Cloud Analytics with Microsoft Azure covers all that you need to extract useful insights from your data. You'll explore the power of data with big data analytics, the Internet of Things (IoT), machine learning, artificial intelligence, and DataOps. You'll also delve into data analytics by studying use cases that focus on creating actionable insights from near-real-time data. As you advance, you'll learn to build an end-to-end analytics pipeline on the cloud with machine learning and deep learning concepts. By the end of this book, you'll have developed a solid understanding of data analytics with Azure and its practical implementation. What you will learn Explore the concepts of modern data warehouses and data pipelines Discover different design considerations while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Differentiate between structured, semi-structured, and unstructured data Choose a cloud-based service for your data analytics solutions Use Azure services to ingest, store and analyze data of any scale Who this book is for If you're planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations that you must keep in mind. Though not necessary, a basic understanding of data analytics concepts such as data streaming, data types, the machine learning life cycle, and Docker containers will help you get the most out of the book.