Clinical Versus Statistical Prediction

Download Clinical Versus Statistical Prediction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Clinical Versus Statistical Prediction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Clinical Versus Statistical Prediction

Author: Paul Meehl
language: en
Publisher: Echo Point Books & Media
Release Date: 2015-09-10
"Clinical versus Statistical Prediction" is Paul Meehl's famous examination of benefits and disutilities related to the different ways of combining information to make predictions. It is a clarifying analysis as relevant today as when it first appeared. A major methodological problem for clinical psychology concerns the relation between clinical and actuarial methods of arriving at diagnoses and predicting behavior. Without prejudging the question as to whether these methods are fundamentally different, we can at least set forth the obvious distinctions between them in practical applications. The problem is to predict how a person is going to behave: What is the most accurate way to go about this task? "Clinical versus Statistical Prediction" offers a penetrating and thorough look at the pros and cons of human judgment versus actuarial integration of information as applied to the prediction problem. Widely considered the leading text on the subject, Paul Meehl's landmark analysis is reprinted here in its entirety, including his updated preface written forty-two years after the first publication of the book. This classic work is a must-have for students and practitioners interested in better understanding human behavior, for anyone wanting to make the most accurate decisions from all sorts of data, and for those interested in the ethics and intricacies of prediction. As Meehl puts it, " "When one is dealing with human lives and life opportunities, it is immoral to adopt a mode of decision-making which has been demonstrated repeatedly to be either inferior in success rate or, when equal, costlier to the client or the taxpayer.""
Clinical Versus Statistical Prediction

Clinical versus Statistical Prediction is Paul Meehl's famous examination of benefits and disutilities related to the different ways of combining information to make predictions. It is a clarifying analysis as relevant today as when it first appeared. A major methodological problem for clinical psychology concerns the relation between clinical and actuarial methods of arriving at diagnoses and predicting behavior. Without prejudging the question as to whether these methods are fundamentally different, we can at least set forth the obvious distinctions between them in practical applications. The problem is to predict how a person is going to behave: What is the most accurate way to go about this task? Clinical versus Statistical Prediction offers a penetrating and thorough look at the pros and cons of human judgment versus actuarial integration of information as applied to the prediction problem. Widely considered the leading text on the subject, Paul Meehl's landmark analysis is reprinted here in its entirety, including his updated preface written forty-two years after the first publication of the book. This classic work is a must-have for students and practitioners interested in better understanding human behavior, for anyone wanting to make the most accurate decisions from all sorts of data, and for those interested in the ethics and intricacies of prediction. As Meehl puts it, "When one is dealing with human lives and life opportunities, it is immoral to adopt a mode of decision-making which has been demonstrated repeatedly to be either inferior in success rate or, when equal, costlier to the client or the taxpayer."
Clinical Versus Statistical Prediction

This volume explores clinical issues, such as: can we rely on clinical expertise in making decisions about people's lives; when should statistical data be used; and what kind of treatment is best for a particular patient?