Classification Of Simple C* Algebras Inductive Limits Of Matrix Algebras Over Trees


Download Classification Of Simple C* Algebras Inductive Limits Of Matrix Algebras Over Trees PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classification Of Simple C* Algebras Inductive Limits Of Matrix Algebras Over Trees book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Classification of Simple $C$*-algebras: Inductive Limits of Matrix Algebras over Trees


Classification of Simple $C$*-algebras: Inductive Limits of Matrix Algebras over Trees

Author: Liangqing Li

language: en

Publisher: American Mathematical Soc.

Release Date: 1997


DOWNLOAD





In this paper, it is shown that the simple unital C*-algebras arising as inductive limits of sequences of finite direct sums of matrix algebras over [italic capital]C([italic capital]X[subscript italic]i), where [italic capital]X[subscript italic]i are arbitrary variable trees, are classified by K-theoretical and tracial data. This result generalizes the result of George Elliott of the case of [italic capital]X[subscript italic]i = [0, 1]. The added generality is useful in the classification of more general inductive limit C*-algebras.

Operator Algebras and Operator Theory


Operator Algebras and Operator Theory

Author: Liming Ge

language: en

Publisher: American Mathematical Soc.

Release Date: 1998


DOWNLOAD





This volume contains the proceedings from the International Conference on Operator Algebras and Operator Theory held at the East China Normal University in Shanghai (China). Participants in the conference ranged from graduate students to postdocs to leading experts who came from around the world. Topics covered were $C*$-algebras, von Neumann algebras, non-self-adjoint operator algebras, wavelets, operator spaces and other related areas. This work consists of contributions from invited speakers and some mathematicians who were unable to attend. It presents important mathematical ideas while maintaining the uniqueness and excitement of this very successful event.

An Introduction to the Classification of Amenable C*-algebras


An Introduction to the Classification of Amenable C*-algebras

Author: Huaxin Lin

language: en

Publisher: World Scientific

Release Date: 2001


DOWNLOAD





The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oeu -algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C Oeu -algebras OCo the first such attempt. The first three chapters present the basics of the theory of C Oeu -algebras which are particularly important to the theory of the classification of amenable C Oeu -algebras. Chapter 4 otters the classification of the so-called AT -algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C Oeu -algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH -algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C Oeu -algebras. Besides being as an introduction to the theory of the classification of amenable C Oeu -algebras, it is a comprehensive reference for those more familiar with the subject. Sample Chapter(s). Chapter 1.1: Banach algebras (260 KB). Chapter 1.2: C*-algebras (210 KB). Chapter 1.3: Commutative C*-algebras (212 KB). Chapter 1.4: Positive cones (207 KB). Chapter 1.5: Approximate identities, hereditary C*-subalgebras and quotients (230 KB). Chapter 1.6: Positive linear functionals and a Gelfand-Naimark theorem (235 KB). Chapter 1.7: Von Neumann algebras (234 KB). Chapter 1.8: Enveloping von Neumann algebras and the spectral theorem (217 KB). Chapter 1.9: Examples of C*-algebras (270 KB). Chapter 1.10: Inductive limits of C*-algebras (252 KB). Chapter 1.11: Exercises (220 KB). Chapter 1.12: Addenda (168 KB). Contents: The Basics of C Oeu -Algebras; Amenable C Oeu -Algebras and K -Theory; AF- Algebras and Ranks of C Oeu -Algebras; Classification of Simple AT -Algebras; C Oeu -Algebra Extensions; Classification of Simple Amenable C Oeu -Algebras. Readership: Researchers and graduate students in operator algebras."