Classification Applications With Deep Learning And Machine Learning Technologies


Download Classification Applications With Deep Learning And Machine Learning Technologies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classification Applications With Deep Learning And Machine Learning Technologies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Classification Applications with Deep Learning and Machine Learning Technologies


Classification Applications with Deep Learning and Machine Learning Technologies

Author: Laith Abualigah

language: en

Publisher: Springer Nature

Release Date: 2022-11-16


DOWNLOAD





This book is very beneficial for early researchers/faculty who want to work in deep learning and machine learning for the classification domain. It helps them study, formulate, and design their research goal by aligning the latest technologies studies’ image and data classifications. The early start-up can use it to work with product or prototype design requirement analysis and its design and development.

Deep Learning for Coders with fastai and PyTorch


Deep Learning for Coders with fastai and PyTorch

Author: Jeremy Howard

language: en

Publisher: O'Reilly Media

Release Date: 2020-06-29


DOWNLOAD





Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Machine Learning Algorithms and Applications


Machine Learning Algorithms and Applications

Author: Mettu Srinivas

language: en

Publisher: John Wiley & Sons

Release Date: 2021-08-10


DOWNLOAD





Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.