Classification And Modeling With Linguistic Information Granules


Download Classification And Modeling With Linguistic Information Granules PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classification And Modeling With Linguistic Information Granules book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Classification and Modeling with Linguistic Information Granules


Classification and Modeling with Linguistic Information Granules

Author: Hisao Ishibuchi

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-02-27


DOWNLOAD





Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability.

The 2-tuple Linguistic Model


The 2-tuple Linguistic Model

Author: Luis Martínez

language: en

Publisher: Springer

Release Date: 2015-12-09


DOWNLOAD





This book examines one of the more common and wide-spread methodologies to deal with uncertainty in real-world decision making problems, the computing with words paradigm, and the fuzzy linguistic approach. The 2-tuple linguistic model is the most popular methodology for computing with words (CWW), because it improves the accuracy of the linguistic computations and keeps the interpretability of the results. The authors provide a thorough review of the specialized literature in CWW and highlight the rapid growth and applicability of the 2-tuple linguistic model. They explore the foundations and methodologies for CWW in complex frameworks and extensions. The book introduces the software FLINTSTONES that provides tools for solving linguistic decision problems based on the 2-tuple linguistic model. Professionals and researchers working in the field of classification or fuzzy sets and systems will find The 2-tuple Linguistic Model: Computing with Words in Decision Making a valuable resource. Undergraduate and postdoctoral students studying computer science and statistics will also find this book a useful study guide.

Handbook On Computational Intelligence (In 2 Volumes)


Handbook On Computational Intelligence (In 2 Volumes)

Author: Plamen Parvanov Angelov

language: en

Publisher: World Scientific

Release Date: 2016-03-18


DOWNLOAD





With the Internet, the proliferation of Big Data, and autonomous systems, mankind has entered into an era of 'digital obesity'. In this century, computational intelligence, such as thinking machines, have been brought forth to process complex human problems in a wide scope of areas — from social sciences, economics and biology, medicine and social networks, to cyber security.The Handbook of Computational Intelligence (in two volumes) prompts readers to look at these problems from a non-traditional angle. It takes a step by step approach, supported by case studies, to explore the issues that have arisen in the process. The Handbook covers many classic paradigms, as well as recent achievements and future promising developments to solve some of these very complex problems. Volume one explores the subjects of fuzzy logic and systems, artificial neural networks, and learning systems. Volume two delves into evolutionary computation, hybrid systems, as well as the applications of computational intelligence in decision making, the process industry, robotics, and autonomous systems.This work is a 'one-stop-shop' for beginners, as well as an inspirational source for more advanced researchers. It is a useful resource for lecturers and learners alike.