Classical Mechanics And Electromagnetism In Accelerator Physics


Download Classical Mechanics And Electromagnetism In Accelerator Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classical Mechanics And Electromagnetism In Accelerator Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Classical Mechanics and Electromagnetism in Accelerator Physics


Classical Mechanics and Electromagnetism in Accelerator Physics

Author: Gennady Stupakov

language: en

Publisher: Springer

Release Date: 2018-05-23


DOWNLOAD





This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagnetic waves and modes in waveguides and radio-frequency cavities are also discussed. The focus then turns to radiation processes of relativistic beams in different conditions, including transition, diffraction, synchrotron, and undulator radiation. Fundamental concepts such as the retarded time for the observed field from a charged particle, coherent and incoherent radiation, and the formation length of radiation are introduced. We conclude with a discussion of laser-driven acceleration of charged particles and the radiation damping effect. Appendices on electromagnetism and special relativity are included, and references are given in some chapters as a launching point for further reading. This text is intended for graduate students who are beginning to explore the field of accelerator physics, but is also recommended for those who are familiar with particle accelerators but wish to delve further into the theory underlying some of the more pressing concerns in their design and operation.

Accelerator Physics (Fourth Edition)


Accelerator Physics (Fourth Edition)

Author: Shyh-yuan Lee

language: en

Publisher: World Scientific Publishing

Release Date: 2018-11-15


DOWNLOAD





Research and development of high energy accelerators began in 1911. Since then, progresses achieved are:The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Hamiltonian dynamics is used to understand beam manipulation, instability and nonlinearity. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.

Much Ado about Microbunching


Much Ado about Microbunching

Author: Daniel F. Ratner

language: en

Publisher: Stanford University

Release Date: 2011


DOWNLOAD





The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Mi- crobunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.